mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-12-24 11:40:31 -05:00
34f8924cfc
This merge brings the WSPR feature development into the main line ready for release in a future v1.6 release. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5424 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
143 lines
3.6 KiB
Fortran
143 lines
3.6 KiB
Fortran
subroutine timf2(x0,k,nfft,nwindow,nb,peaklimit,x1, &
|
|
slimit,lstrong,px,nzap)
|
|
|
|
! Sequential processing of time-domain I/Q data, using Linrad-like
|
|
! "first FFT" and "first backward FFT", treating frequencies with
|
|
! strong signals differently. Noise blanking is applied to weak
|
|
! signals only.
|
|
|
|
! x0 - real input data
|
|
! nfft - length of FFTs
|
|
! nwindow - 0 for no window, 2 for sin^2 window
|
|
! x1 - real output data
|
|
|
|
! Non-windowed processing means no overlap, so kstep=nfft.
|
|
! Sin^2 window has 50% overlap, kstep=nfft/2.
|
|
|
|
! Frequencies with strong signals are identified and separated. Back
|
|
! transforms are done separately for weak and strong signals, so that
|
|
! noise blanking can be applied to the weak-signal portion. Strong and
|
|
! weak are finally re-combined, in the time domain.
|
|
|
|
parameter (MAXFFT=1024,MAXNH=MAXFFT/2)
|
|
parameter (MAXSIGS=100)
|
|
real x0(0:nfft-1),x1(0:nfft-1)
|
|
real x(0:MAXFFT-1),xw(0:MAXFFT-1),xs(0:MAXFFT-1)
|
|
real xwov(0:MAXNH-1),xsov(0:MAXNH-1)
|
|
complex cx(0:MAXFFT-1),cxt(0:MAXFFT-1)
|
|
complex cxs(0:MAXFFT-1) !Strong signals
|
|
complex cxw(0:MAXFFT-1) !Weak signals
|
|
real*4 w(0:MAXFFT-1)
|
|
real*4 s(0:MAXNH)
|
|
logical*1 lstrong(0:MAXNH),lprev
|
|
integer ia(MAXSIGS),ib(MAXSIGS)
|
|
logical first
|
|
equivalence (x,cx),(xw,cxw),(xs,cxs)
|
|
data first/.true./
|
|
data k0/99999999/
|
|
save
|
|
|
|
if(first) then
|
|
pi=4.0*atan(1.0)
|
|
do i=0,nfft-1
|
|
w(i)=(sin(i*pi/nfft))**2
|
|
enddo
|
|
s=0.
|
|
nh=nfft/2
|
|
kstep=nfft
|
|
if(nwindow.eq.2) kstep=nh
|
|
fac=1.0/nfft
|
|
slimit=1.e30
|
|
first=.false.
|
|
endif
|
|
|
|
if(k.lt.k0) then
|
|
xsov=0.
|
|
xwov=0.
|
|
endif
|
|
k0=k
|
|
|
|
x(0:nfft-1)=x0
|
|
if(nwindow.eq.2) x(0:nfft-1)=w(0:nfft-1)*x(0:nfft-1)
|
|
call four2a(x,nfft,1,-1,0) !First forward FFT, r2c
|
|
cxt(0:nh)=cx(0:nh)
|
|
|
|
! Identify frequencies with strong signals.
|
|
do i=0,nh
|
|
p=real(cxt(i))**2 + aimag(cxt(i))**2
|
|
s(i)=p
|
|
enddo
|
|
ave=sum(s(0:nh))/nh
|
|
lstrong(0:nh)=s(0:nh).gt.10.0*ave
|
|
|
|
nsigs=0
|
|
lprev=.false.
|
|
iwid=1
|
|
ib=-99
|
|
do i=0,nh
|
|
if(lstrong(i) .and. (.not.lprev)) then
|
|
if(nsigs.lt.MAXSIGS) nsigs=nsigs+1
|
|
ia(nsigs)=i-iwid
|
|
if(ia(nsigs).lt.0) ia(nsigs)=0
|
|
endif
|
|
if(.not.lstrong(i) .and. lprev) then
|
|
ib(nsigs)=i-1+iwid
|
|
if(ib(nsigs).gt.nh) ib(nsigs)=nh
|
|
endif
|
|
lprev=lstrong(i)
|
|
enddo
|
|
|
|
if(nsigs.gt.0) then
|
|
do i=1,nsigs
|
|
ja=ia(i)
|
|
jb=ib(i)
|
|
if(ja.lt.0 .or. ja.gt.nh .or. jb.lt.0 .or. jb.gt.nh) then
|
|
cycle
|
|
endif
|
|
if(jb.eq.-99) jb=ja + min(2*iwid,nh)
|
|
lstrong(ja:jb)=.true.
|
|
enddo
|
|
endif
|
|
|
|
! Copy frequency-domain data into array cs (strong) or cw (weak).
|
|
do i=0,nh
|
|
if(lstrong(i)) then
|
|
cxs(i)=fac*cxt(i)
|
|
cxw(i)=0.
|
|
else
|
|
cxw(i)=fac*cxt(i)
|
|
cxs(i)=0.
|
|
endif
|
|
enddo
|
|
|
|
call four2a(cxw,nfft,1,1,-1) !Transform weak and strong back
|
|
call four2a(cxs,nfft,1,1,-1) !to time domain, separately (c2r)
|
|
|
|
if(nwindow.eq.2) then
|
|
xw(0:nh-1)=xw(0:nh-1)+xwov(0:nh-1) !Add previous segment's 2nd half
|
|
xwov(0:nh-1)=xw(nh:nfft-1) !Save 2nd half
|
|
xs(0:nh-1)=xs(0:nh-1)+xsov(0:nh-1) !Ditto for strong signals
|
|
xsov(0:nh-1)=xs(nh:nfft-1)
|
|
endif
|
|
|
|
! Apply noise blanking to weak data
|
|
if(nb.ne.0) then
|
|
do i=0,kstep-1
|
|
peak=abs(xw(i))
|
|
if(peak.gt.peaklimit) then
|
|
xw(i)=0.
|
|
nzap=nzap+1
|
|
endif
|
|
enddo
|
|
endif
|
|
|
|
! Compute power levels from weak data only
|
|
do i=0,kstep-1
|
|
px=px + xw(i)**2
|
|
enddo
|
|
|
|
x1(0:kstep-1)=xw(0:kstep-1) + xs(0:kstep-1) !Recombine weak + strong
|
|
|
|
return
|
|
end subroutine timf2
|