WSJT-X/boost/boost/intrusive/slist.hpp

2255 lines
86 KiB
C++

/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2014
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_SLIST_HPP
#define BOOST_INTRUSIVE_SLIST_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/slist_hook.hpp>
#include <boost/intrusive/circular_slist_algorithms.hpp>
#include <boost/intrusive/linear_slist_algorithms.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/link_mode.hpp>
#include <boost/intrusive/detail/get_value_traits.hpp>
#include <boost/intrusive/detail/is_stateful_value_traits.hpp>
#include <boost/intrusive/detail/default_header_holder.hpp>
#include <boost/intrusive/detail/uncast.hpp>
#include <boost/intrusive/detail/mpl.hpp>
#include <boost/intrusive/detail/iterator.hpp>
#include <boost/intrusive/detail/slist_iterator.hpp>
#include <boost/intrusive/detail/array_initializer.hpp>
#include <boost/intrusive/detail/exception_disposer.hpp>
#include <boost/intrusive/detail/equal_to_value.hpp>
#include <boost/intrusive/detail/key_nodeptr_comp.hpp>
#include <boost/intrusive/detail/simple_disposers.hpp>
#include <boost/intrusive/detail/size_holder.hpp>
#include <boost/intrusive/detail/algorithm.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/static_assert.hpp>
#include <boost/intrusive/detail/minimal_less_equal_header.hpp>//std::less
#include <cstddef> //std::size_t
#include <boost/intrusive/detail/minimal_pair_header.hpp> //std::pair
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
namespace boost {
namespace intrusive {
/// @cond
template<class HeaderHolder, class NodePtr, bool>
struct header_holder_plus_last
{
HeaderHolder header_holder_;
NodePtr last_;
};
template<class HeaderHolder, class NodePtr>
struct header_holder_plus_last<HeaderHolder, NodePtr, false>
{
HeaderHolder header_holder_;
};
struct default_slist_hook_applier
{ template <class T> struct apply{ typedef typename T::default_slist_hook type; }; };
template<>
struct is_default_hook_tag<default_slist_hook_applier>
{ static const bool value = true; };
struct slist_defaults
{
typedef default_slist_hook_applier proto_value_traits;
static const bool constant_time_size = true;
static const bool linear = false;
typedef std::size_t size_type;
static const bool cache_last = false;
typedef void header_holder_type;
};
struct slist_bool_flags
{
static const std::size_t linear_pos = 1u;
static const std::size_t constant_time_size_pos = 2u;
static const std::size_t cache_last_pos = 4u;
};
/// @endcond
//! The class template slist is an intrusive container, that encapsulates
//! a singly-linked list. You can use such a list to squeeze the last bit
//! of performance from your application. Unfortunately, the little gains
//! come with some huge drawbacks. A lot of member functions can't be
//! implemented as efficiently as for standard containers. To overcome
//! this limitation some other member functions with rather unusual semantics
//! have to be introduced.
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c constant_time_size<>, \c size_type<>,
//! \c linear<> and \c cache_last<>.
//!
//! The iterators of slist are forward iterators. slist provides a static
//! function called "previous" to compute the previous iterator of a given iterator.
//! This function has linear complexity. To improve the usability esp. with
//! the '*_after' functions, ++end() == begin() and previous(begin()) == end()
//! are defined. An new special function "before_begin()" is defined, which returns
//! an iterator that points one less the beginning of the list: ++before_begin() == begin()
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class ValueTraits, class SizeType, std::size_t BoolFlags, typename HeaderHolder>
#endif
class slist_impl
{
//Public typedefs
public:
typedef ValueTraits value_traits;
typedef typename value_traits::pointer pointer;
typedef typename value_traits::const_pointer const_pointer;
typedef typename pointer_traits<pointer>::element_type value_type;
typedef typename pointer_traits<pointer>::reference reference;
typedef typename pointer_traits<const_pointer>::reference const_reference;
typedef typename pointer_traits<pointer>::difference_type difference_type;
typedef SizeType size_type;
typedef slist_iterator<value_traits, false> iterator;
typedef slist_iterator<value_traits, true> const_iterator;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename detail::get_header_holder_type
< value_traits, HeaderHolder >::type header_holder_type;
static const bool constant_time_size = 0 != (BoolFlags & slist_bool_flags::constant_time_size_pos);
static const bool stateful_value_traits = detail::is_stateful_value_traits<value_traits>::value;
static const bool linear = 0 != (BoolFlags & slist_bool_flags::linear_pos);
static const bool cache_last = 0 != (BoolFlags & slist_bool_flags::cache_last_pos);
static const bool has_container_from_iterator =
detail::is_same< header_holder_type, detail::default_header_holder< node_traits > >::value;
typedef typename detail::if_c
< linear
, linear_slist_algorithms<node_traits>
, circular_slist_algorithms<node_traits>
>::type node_algorithms;
/// @cond
private:
typedef detail::size_holder<constant_time_size, size_type> size_traits;
//noncopyable
BOOST_MOVABLE_BUT_NOT_COPYABLE(slist_impl)
static const bool safemode_or_autounlink = is_safe_autounlink<value_traits::link_mode>::value;
//Constant-time size is incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(constant_time_size && ((int)value_traits::link_mode == (int)auto_unlink)));
//Linear singly linked lists are incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(linear && ((int)value_traits::link_mode == (int)auto_unlink)));
//A list with cached last node is incompatible with auto-unlink hooks!
BOOST_STATIC_ASSERT(!(cache_last && ((int)value_traits::link_mode == (int)auto_unlink)));
node_ptr get_end_node()
{ return node_ptr(linear ? node_ptr() : this->get_root_node()); }
const_node_ptr get_end_node() const
{
return const_node_ptr
(linear ? const_node_ptr() : this->get_root_node()); }
node_ptr get_root_node()
{ return data_.root_plus_size_.header_holder_.get_node(); }
const_node_ptr get_root_node() const
{ return data_.root_plus_size_.header_holder_.get_node(); }
node_ptr get_last_node()
{ return this->get_last_node(detail::bool_<cache_last>()); }
const_node_ptr get_last_node() const
{ return this->get_last_node(detail::bool_<cache_last>()); }
void set_last_node(const node_ptr &n)
{ return this->set_last_node(n, detail::bool_<cache_last>()); }
static node_ptr get_last_node(detail::bool_<false>)
{
//This function shall not be used if cache_last is not true
BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last);
return node_ptr();
}
static void set_last_node(const node_ptr &, detail::bool_<false>)
{
//This function shall not be used if cache_last is not true
BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last);
}
node_ptr get_last_node(detail::bool_<true>)
{ return node_ptr(data_.root_plus_size_.last_); }
const_node_ptr get_last_node(detail::bool_<true>) const
{ return const_node_ptr(data_.root_plus_size_.last_); }
void set_last_node(const node_ptr & n, detail::bool_<true>)
{ data_.root_plus_size_.last_ = n; }
void set_default_constructed_state()
{
node_algorithms::init_header(this->get_root_node());
this->priv_size_traits().set_size(size_type(0));
if(cache_last){
this->set_last_node(this->get_root_node());
}
}
typedef header_holder_plus_last<header_holder_type, node_ptr, cache_last> header_holder_plus_last_t;
struct root_plus_size
: public size_traits
, public header_holder_plus_last_t
{};
struct data_t
: public value_traits
{
typedef typename slist_impl::value_traits value_traits;
explicit data_t(const value_traits &val_traits)
: value_traits(val_traits)
{}
root_plus_size root_plus_size_;
} data_;
size_traits &priv_size_traits()
{ return data_.root_plus_size_; }
const size_traits &priv_size_traits() const
{ return data_.root_plus_size_; }
const value_traits &priv_value_traits() const
{ return data_; }
value_traits &priv_value_traits()
{ return data_; }
typedef typename boost::intrusive::value_traits_pointers
<ValueTraits>::const_value_traits_ptr const_value_traits_ptr;
const_value_traits_ptr priv_value_traits_ptr() const
{ return pointer_traits<const_value_traits_ptr>::pointer_to(this->priv_value_traits()); }
/// @endcond
public:
///@cond
//! <b>Requires</b>: f and before_l belong to another slist.
//!
//! <b>Effects</b>: Transfers the range [f, before_l] to this
//! list, after the element pointed by prev_pos.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements transferred
//! if constant_time_size is true. Constant-time otherwise.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Warning</b>: Experimental function, don't use it!
slist_impl( const node_ptr & f, const node_ptr & before_l
, size_type n, const value_traits &v_traits = value_traits())
: data_(v_traits)
{
if(n){
this->priv_size_traits().set_size(n);
if(cache_last){
this->set_last_node(before_l);
}
node_traits::set_next(this->get_root_node(), f);
node_traits::set_next(before_l, this->get_end_node());
}
else{
this->set_default_constructed_state();
}
}
///@endcond
//! <b>Effects</b>: constructs an empty list.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
slist_impl()
: data_(value_traits())
{ this->set_default_constructed_state(); }
//! <b>Effects</b>: constructs an empty list.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
explicit slist_impl(const value_traits &v_traits)
: data_(v_traits)
{ this->set_default_constructed_state(); }
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//!
//! <b>Effects</b>: Constructs a list equal to [b ,e).
//!
//! <b>Complexity</b>: Linear in distance(b, e). No copy constructors are called.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks).
template<class Iterator>
slist_impl(Iterator b, Iterator e, const value_traits &v_traits = value_traits())
: data_(v_traits)
{
this->set_default_constructed_state();
//nothrow, no need to rollback to release elements on exception
this->insert_after(this->cbefore_begin(), b, e);
}
//! <b>Effects</b>: Constructs a container moving resources from another container.
//! Internal value traits are move constructed and
//! nodes belonging to x (except the node representing the "end") are linked to *this.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_traits::node_traits::node's
//! move constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the move constructor of value traits throws.
slist_impl(BOOST_RV_REF(slist_impl) x)
: data_(::boost::move(x.priv_value_traits()))
{
this->set_default_constructed_state();
//nothrow, no need to rollback to release elements on exception
this->swap(x);
}
//! <b>Effects</b>: Equivalent to swap
//!
slist_impl& operator=(BOOST_RV_REF(slist_impl) x)
{ this->swap(x); return *this; }
//! <b>Effects</b>: If it's a safe-mode
//! or auto-unlink value, the destructor does nothing
//! (ie. no code is generated). Otherwise it detaches all elements from this.
//! In this case the objects in the list are not deleted (i.e. no destructors
//! are called), but the hooks according to the value_traits template parameter
//! are set to their default value.
//!
//! <b>Complexity</b>: Linear to the number of elements in the list, if
//! it's a safe-mode or auto-unlink value. Otherwise constant.
~slist_impl()
{
if(is_safe_autounlink<ValueTraits::link_mode>::value){
this->clear();
node_algorithms::init(this->get_root_node());
}
}
//! <b>Effects</b>: Erases all the elements of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of the list.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased elements.
void clear()
{
if(safemode_or_autounlink){
this->clear_and_dispose(detail::null_disposer());
}
else{
this->set_default_constructed_state();
}
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements of the container
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of the list.
//!
//! <b>Note</b>: Invalidates the iterators to the erased elements.
template <class Disposer>
void clear_and_dispose(Disposer disposer)
{
const_iterator it(this->begin()), itend(this->end());
while(it != itend){
node_ptr to_erase(it.pointed_node());
++it;
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
}
this->set_default_constructed_state();
}
//! <b>Requires</b>: value must be an lvalue.
//!
//! <b>Effects</b>: Inserts the value in the front of the list.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void push_front(reference value)
{
node_ptr to_insert = priv_value_traits().to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert));
if(cache_last){
if(this->empty()){
this->set_last_node(to_insert);
}
}
node_algorithms::link_after(this->get_root_node(), to_insert);
this->priv_size_traits().increment();
}
//! <b>Requires</b>: value must be an lvalue.
//!
//! <b>Effects</b>: Inserts the value in the back of the list.
//! No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! This function is only available is cache_last<> is true.
void push_back(reference value)
{
BOOST_STATIC_ASSERT((cache_last));
node_ptr n = priv_value_traits().to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(n));
node_algorithms::link_after(this->get_last_node(), n);
if(cache_last){
this->set_last_node(n);
}
this->priv_size_traits().increment();
}
//! <b>Effects</b>: Erases the first element of the list.
//! No destructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the erased element.
void pop_front()
{ return this->pop_front_and_dispose(detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the first element of the list.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Disposer>
void pop_front_and_dispose(Disposer disposer)
{
node_ptr to_erase = node_traits::get_next(this->get_root_node());
node_algorithms::unlink_after(this->get_root_node());
this->priv_size_traits().decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
if(cache_last){
if(this->empty()){
this->set_last_node(this->get_root_node());
}
}
}
//! <b>Effects</b>: Returns a reference to the first element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front()
{ return *this->priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); }
//! <b>Effects</b>: Returns a const_reference to the first element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const
{ return *this->priv_value_traits().to_value_ptr(detail::uncast(node_traits::get_next(this->get_root_node()))); }
//! <b>Effects</b>: Returns a reference to the last element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! This function is only available is cache_last<> is true.
reference back()
{
BOOST_STATIC_ASSERT((cache_last));
return *this->priv_value_traits().to_value_ptr(this->get_last_node());
}
//! <b>Effects</b>: Returns a const_reference to the last element of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! This function is only available is cache_last<> is true.
const_reference back() const
{
BOOST_STATIC_ASSERT((cache_last));
return *this->priv_value_traits().to_value_ptr(this->get_last_node());
}
//! <b>Effects</b>: Returns an iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return iterator (node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return const_iterator (node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return const_iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns an iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return iterator(this->get_end_node(), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return const_iterator(detail::uncast(this->get_end_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return this->end(); }
//! <b>Effects</b>: Returns an iterator that points to a position
//! before the first element. Equivalent to "end()"
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator before_begin()
{ return iterator(this->get_root_node(), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns an iterator that points to a position
//! before the first element. Equivalent to "end()"
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator before_begin() const
{ return const_iterator(detail::uncast(this->get_root_node()), this->priv_value_traits_ptr()); }
//! <b>Effects</b>: Returns an iterator that points to a position
//! before the first element. Equivalent to "end()"
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbefore_begin() const
{ return this->before_begin(); }
//! <b>Effects</b>: Returns an iterator to the last element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: This function is present only if cached_last<> option is true.
iterator last()
{
//This function shall not be used if cache_last is not true
BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last);
return iterator (this->get_last_node(), this->priv_value_traits_ptr());
}
//! <b>Effects</b>: Returns a const_iterator to the last element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: This function is present only if cached_last<> option is true.
const_iterator last() const
{
//This function shall not be used if cache_last is not true
BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last);
return const_iterator (this->get_last_node(), this->priv_value_traits_ptr());
}
//! <b>Effects</b>: Returns a const_iterator to the last element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: This function is present only if cached_last<> option is true.
const_iterator clast() const
{ return const_iterator(this->get_last_node(), this->priv_value_traits_ptr()); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of slist.
//!
//! <b>Effects</b>: Returns a const reference to the slist associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static slist_impl &container_from_end_iterator(iterator end_iterator)
{ return slist_impl::priv_container_from_end_iterator(end_iterator); }
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of slist.
//!
//! <b>Effects</b>: Returns a const reference to the slist associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const slist_impl &container_from_end_iterator(const_iterator end_iterator)
{ return slist_impl::priv_container_from_end_iterator(end_iterator); }
//! <b>Effects</b>: Returns the number of the elements contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements contained in the list.
//! if constant_time_size is false. Constant time otherwise.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
size_type size() const
{
if(constant_time_size)
return this->priv_size_traits().get_size();
else
return node_algorithms::count(this->get_root_node()) - 1;
}
//! <b>Effects</b>: Returns true if the list contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
bool empty() const
{ return node_algorithms::unique(this->get_root_node()); }
//! <b>Effects</b>: Swaps the elements of x and *this.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements of both lists.
//! Constant-time if linear<> and/or cache_last<> options are used.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void swap(slist_impl& other)
{
if(cache_last){
priv_swap_cache_last(this, &other);
}
else{
this->priv_swap_lists(this->get_root_node(), other.get_root_node(), detail::bool_<linear>());
}
this->priv_size_traits().swap(other.priv_size_traits());
}
//! <b>Effects</b>: Moves backwards all the elements, so that the first
//! element becomes the second, the second becomes the third...
//! the last element becomes the first one.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements plus the number shifts.
//!
//! <b>Note</b>: Iterators Does not affect the validity of iterators and references.
void shift_backwards(size_type n = 1)
{ this->priv_shift_backwards(n, detail::bool_<linear>()); }
//! <b>Effects</b>: Moves forward all the elements, so that the second
//! element becomes the first, the third becomes the second...
//! the first element becomes the last one.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements plus the number shifts.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
void shift_forward(size_type n = 1)
{ this->priv_shift_forward(n, detail::bool_<linear>()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//! Cloner should yield to nodes equivalent to the original nodes.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws.
template <class Cloner, class Disposer>
void clone_from(const slist_impl &src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
detail::exception_disposer<slist_impl, Disposer>
rollback(*this, disposer);
const_iterator prev(this->cbefore_begin());
const_iterator b(src.begin()), e(src.end());
for(; b != e; ++b){
prev = this->insert_after(prev, *cloner(*b));
}
rollback.release();
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//! Cloner should yield to nodes equivalent to the original nodes.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(reference)
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws.
template <class Cloner, class Disposer>
void clone_from(BOOST_RV_REF(slist_impl) src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
detail::exception_disposer<slist_impl, Disposer>
rollback(*this, disposer);
iterator prev(this->cbefore_begin());
iterator b(src.begin()), e(src.end());
for(; b != e; ++b){
prev = this->insert_after(prev, *cloner(*b));
}
rollback.release();
}
//! <b>Requires</b>: value must be an lvalue and prev_p must point to an element
//! contained by the list or to end().
//!
//! <b>Effects</b>: Inserts the value after the position pointed by prev_p.
//! No copy constructor is called.
//!
//! <b>Returns</b>: An iterator to the inserted element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
iterator insert_after(const_iterator prev_p, reference value)
{
node_ptr n = priv_value_traits().to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(n));
node_ptr prev_n(prev_p.pointed_node());
node_algorithms::link_after(prev_n, n);
if(cache_last && (this->get_last_node() == prev_n)){
this->set_last_node(n);
}
this->priv_size_traits().increment();
return iterator (n, this->priv_value_traits_ptr());
}
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type and prev_p must point to an element
//! contained by the list or to the end node.
//!
//! <b>Effects</b>: Inserts the [f, l)
//! after the position prev_p.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
template<class Iterator>
void insert_after(const_iterator prev_p, Iterator f, Iterator l)
{
//Insert first nodes avoiding cache and size checks
size_type count = 0;
node_ptr prev_n(prev_p.pointed_node());
for (; f != l; ++f, ++count){
const node_ptr n = priv_value_traits().to_node_ptr(*f);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(n));
node_algorithms::link_after(prev_n, n);
prev_n = n;
}
//Now fix special cases if needed
if(cache_last && (this->get_last_node() == prev_p.pointed_node())){
this->set_last_node(prev_n);
}
if(constant_time_size){
this->priv_size_traits().increase(count);
}
}
//! <b>Requires</b>: value must be an lvalue and p must point to an element
//! contained by the list or to end().
//!
//! <b>Effects</b>: Inserts the value before the position pointed by p.
//! No copy constructor is called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before p.
//! Constant-time if cache_last<> is true and p == end().
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
iterator insert(const_iterator p, reference value)
{ return this->insert_after(this->previous(p), value); }
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type and p must point to an element
//! contained by the list or to the end node.
//!
//! <b>Effects</b>: Inserts the pointed by b and e
//! before the position p. No copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus linear
//! to the elements before b.
//! Linear to the number of elements to insert if cache_last<> option is true and p == end().
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
template<class Iterator>
void insert(const_iterator p, Iterator b, Iterator e)
{ return this->insert_after(this->previous(p), b, e); }
//! <b>Effects</b>: Erases the element after the element pointed by prev of
//! the list. No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase_after(const_iterator prev)
{ return this->erase_after_and_dispose(prev, detail::null_disposer()); }
//! <b>Effects</b>: Erases the range (before_f, l) from
//! the list. No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of erased elements if it's a safe-mode
//! , auto-unlink value or constant-time size is activated. Constant time otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase_after(const_iterator before_f, const_iterator l)
{
if(safemode_or_autounlink || constant_time_size){
return this->erase_after_and_dispose(before_f, l, detail::null_disposer());
}
else{
const node_ptr bfp = before_f.pointed_node();
const node_ptr lp = l.pointed_node();
if(cache_last){
if(lp == this->get_end_node()){
this->set_last_node(bfp);
}
}
node_algorithms::unlink_after(bfp, lp);
return l.unconst();
}
}
//! <b>Effects</b>: Erases the range (before_f, l) from
//! the list. n must be distance(before_f, l) - 1.
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: constant-time if link_mode is normal_link.
//! Linear to the elements (l - before_f) otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase_after(const_iterator before_f, const_iterator l, size_type n)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance((++const_iterator(before_f)).pointed_node(), l.pointed_node()) == n);
if(safemode_or_autounlink){
return this->erase_after(before_f, l);
}
else{
const node_ptr bfp = before_f.pointed_node();
const node_ptr lp = l.pointed_node();
if(cache_last){
if((lp == this->get_end_node())){
this->set_last_node(bfp);
}
}
node_algorithms::unlink_after(bfp, lp);
if(constant_time_size){
this->priv_size_traits().decrease(n);
}
return l.unconst();
}
}
//! <b>Effects</b>: Erases the element pointed by i of the list.
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed element,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements before i.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase(const_iterator i)
{ return this->erase_after(this->previous(i)); }
//! <b>Requires</b>: f and l must be valid iterator to elements in *this.
//!
//! <b>Effects</b>: Erases the range pointed by b and e.
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements before l.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased elements.
iterator erase(const_iterator f, const_iterator l)
{ return this->erase_after(this->previous(f), l); }
//! <b>Effects</b>: Erases the range [f, l) from
//! the list. n must be distance(f, l).
//! No destructors are called.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: linear to the elements before f if link_mode is normal_link
//! and constant_time_size is activated. Linear to the elements before l otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
iterator erase(const_iterator f, const_iterator l, size_type n)
{ return this->erase_after(this->previous(f), l, n); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element after the element pointed by prev of
//! the list.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Disposer>
iterator erase_after_and_dispose(const_iterator prev, Disposer disposer)
{
const_iterator it(prev);
++it;
node_ptr to_erase(it.pointed_node());
++it;
node_ptr prev_n(prev.pointed_node());
node_algorithms::unlink_after(prev_n);
if(cache_last && (to_erase == this->get_last_node())){
this->set_last_node(prev_n);
}
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
this->priv_size_traits().decrement();
return it.unconst();
}
/// @cond
static iterator s_insert_after(const_iterator const prev_p, reference value)
{
BOOST_STATIC_ASSERT(((!cache_last)&&(!constant_time_size)&&(!stateful_value_traits)));
node_ptr const n = value_traits::to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(n));
node_algorithms::link_after(prev_p.pointed_node(), n);
return iterator (n, const_value_traits_ptr());
}
template<class Disposer>
static iterator s_erase_after_and_dispose(const_iterator prev, Disposer disposer)
{
BOOST_STATIC_ASSERT(((!cache_last)&&(!constant_time_size)&&(!stateful_value_traits)));
const_iterator it(prev);
++it;
node_ptr to_erase(it.pointed_node());
++it;
node_ptr prev_n(prev.pointed_node());
node_algorithms::unlink_after(prev_n);
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(value_traits::to_value_ptr(to_erase));
return it.unconst();
}
template<class Disposer>
static iterator s_erase_after_and_dispose(const_iterator before_f, const_iterator l, Disposer disposer)
{
BOOST_STATIC_ASSERT(((!cache_last)&&(!constant_time_size)&&(!stateful_value_traits)));
node_ptr bfp(before_f.pointed_node()), lp(l.pointed_node());
node_ptr fp(node_traits::get_next(bfp));
node_algorithms::unlink_after(bfp, lp);
while(fp != lp){
node_ptr to_erase(fp);
fp = node_traits::get_next(fp);
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(value_traits::to_value_ptr(to_erase));
}
return l.unconst();
}
static iterator s_erase_after(const_iterator prev)
{ return s_erase_after_and_dispose(prev, detail::null_disposer()); }
/// @endcond
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the range (before_f, l) from
//! the list.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements (l - before_f + 1).
//!
//! <b>Note</b>: Invalidates the iterators to the erased element.
template<class Disposer>
iterator erase_after_and_dispose(const_iterator before_f, const_iterator l, Disposer disposer)
{
node_ptr bfp(before_f.pointed_node()), lp(l.pointed_node());
node_ptr fp(node_traits::get_next(bfp));
node_algorithms::unlink_after(bfp, lp);
while(fp != lp){
node_ptr to_erase(fp);
fp = node_traits::get_next(fp);
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
disposer(priv_value_traits().to_value_ptr(to_erase));
this->priv_size_traits().decrement();
}
if(cache_last && (node_traits::get_next(bfp) == this->get_end_node())){
this->set_last_node(bfp);
}
return l.unconst();
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed by i of the list.
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Returns</b>: the first element remaining beyond the removed element,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements before i.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased element.
template<class Disposer>
iterator erase_and_dispose(const_iterator i, Disposer disposer)
{ return this->erase_after_and_dispose(this->previous(i), disposer); }
#if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class Disposer>
iterator erase_and_dispose(iterator i, Disposer disposer)
{ return this->erase_and_dispose(const_iterator(i), disposer); }
#endif
//! <b>Requires</b>: f and l must be valid iterator to elements in *this.
//! Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the range pointed by b and e.
//! No destructors are called.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of erased elements plus linear
//! to the elements before f.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references) to the
//! erased elements.
template<class Disposer>
iterator erase_and_dispose(const_iterator f, const_iterator l, Disposer disposer)
{ return this->erase_after_and_dispose(this->previous(f), l, disposer); }
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type.
//!
//! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus
//! linear to the elements contained in the list if it's a safe-mode
//! or auto-unlink value.
//! Linear to the number of elements inserted in the list otherwise.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements.
template<class Iterator>
void assign(Iterator b, Iterator e)
{
this->clear();
this->insert_after(this->cbefore_begin(), b, e);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Requires</b>: Dereferencing iterator must yield
//! an lvalue of type value_type.
//!
//! <b>Effects</b>: Clears the list and inserts the range pointed by b and e.
//! No destructors or copy constructors are called.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted plus
//! linear to the elements contained in the list.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements.
template<class Iterator, class Disposer>
void dispose_and_assign(Disposer disposer, Iterator b, Iterator e)
{
this->clear_and_dispose(disposer);
this->insert_after(this->cbefore_begin(), b, e, disposer);
}
//! <b>Requires</b>: prev must point to an element contained by this list or
//! to the before_begin() element
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, after the
//! the element pointed by prev. No destructors or copy constructors are called.
//!
//! <b>Returns</b>: Nothing.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: In general, linear to the elements contained in x.
//! Constant-time if cache_last<> option is true and also constant-time if
//! linear<> option is true "this" is empty and "l" is not used.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Additional note</b>: If the optional parameter "l" is provided, it will be
//! assigned to the last spliced element or prev if x is empty.
//! This iterator can be used as new "prev" iterator for a new splice_after call.
//! that will splice new values after the previously spliced values.
void splice_after(const_iterator prev, slist_impl &x, const_iterator *l = 0)
{
if(x.empty()){
if(l) *l = prev;
}
else if(linear && this->empty()){
this->swap(x);
if(l) *l = this->previous(this->cend());
}
else{
const_iterator last_x(x.previous(x.end())); //constant time if cache_last is active
node_ptr prev_n(prev.pointed_node());
node_ptr last_x_n(last_x.pointed_node());
if(cache_last){
x.set_last_node(x.get_root_node());
if(node_traits::get_next(prev_n) == this->get_end_node()){
this->set_last_node(last_x_n);
}
}
node_algorithms::transfer_after( prev_n, x.before_begin().pointed_node(), last_x_n);
this->priv_size_traits().increase(x.priv_size_traits().get_size());
x.priv_size_traits().set_size(size_type(0));
if(l) *l = last_x;
}
}
//! <b>Requires</b>: prev must point to an element contained by this list or
//! to the before_begin() element. prev_ele must point to an element contained in list
//! x or must be x.before_begin().
//!
//! <b>Effects</b>: Transfers the element after prev_ele, from list x to this list,
//! after the element pointed by prev. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist_impl &x, const_iterator prev_ele)
{
const_iterator elem = prev_ele;
this->splice_after(prev_pos, x, prev_ele, ++elem, 1);
}
//! <b>Requires</b>: prev_pos must be a dereferenceable iterator in *this or be
//! before_begin(), and before_f and before_l belong to x and
//! ++before_f != x.end() && before_l != x.end().
//!
//! <b>Effects</b>: Transfers the range (before_f, before_l] from list x to this
//! list, after the element pointed by prev_pos.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements transferred
//! if constant_time_size is true. Constant-time otherwise.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist_impl &x, const_iterator before_f, const_iterator before_l)
{
if(constant_time_size)
this->splice_after(prev_pos, x, before_f, before_l, node_algorithms::distance(before_f.pointed_node(), before_l.pointed_node()));
else
this->priv_splice_after
(prev_pos.pointed_node(), x, before_f.pointed_node(), before_l.pointed_node());
}
//! <b>Requires</b>: prev_pos must be a dereferenceable iterator in *this or be
//! before_begin(), and before_f and before_l belong to x and
//! ++before_f != x.end() && before_l != x.end() and
//! n == distance(before_f, before_l).
//!
//! <b>Effects</b>: Transfers the range (before_f, before_l] from list x to this
//! list, after the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist_impl &x, const_iterator before_f, const_iterator before_l, size_type n)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance(before_f.pointed_node(), before_l.pointed_node()) == n);
this->priv_splice_after
(prev_pos.pointed_node(), x, before_f.pointed_node(), before_l.pointed_node());
if(constant_time_size){
this->priv_size_traits().increase(n);
x.priv_size_traits().decrease(n);
}
}
//! <b>Requires</b>: it is an iterator to an element in *this.
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, before the
//! the element pointed by it. No destructors or copy constructors are called.
//!
//! <b>Returns</b>: Nothing.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements contained in x plus linear to
//! the elements before it.
//! Linear to the elements before it if cache_last<> option is true.
//! Constant-time if cache_last<> option is true and it == end().
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Additional note</b>: If the optional parameter "l" is provided, it will be
//! assigned to the last spliced element or prev if x is empty.
//! This iterator can be used as new "prev" iterator for a new splice_after call.
//! that will splice new values after the previously spliced values.
void splice(const_iterator it, slist_impl &x, const_iterator *l = 0)
{ this->splice_after(this->previous(it), x, l); }
//! <b>Requires</b>: it p must be a valid iterator of *this.
//! elem must point to an element contained in list
//! x.
//!
//! <b>Effects</b>: Transfers the element elem, from list x to this list,
//! before the element pointed by pos. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements before pos and before elem.
//! Linear to the elements before elem if cache_last<> option is true and pos == end().
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator pos, slist_impl &x, const_iterator elem)
{ return this->splice_after(this->previous(pos), x, x.previous(elem)); }
//! <b>Requires</b>: pos must be a dereferenceable iterator in *this
//! and f and f belong to x and f and f a valid range on x.
//!
//! <b>Effects</b>: Transfers the range [f, l) from list x to this
//! list, before the element pointed by pos.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the sum of elements before pos, f, and l
//! plus linear to the number of elements transferred if constant_time_size is true.
//! Linear to the sum of elements before f, and l
//! plus linear to the number of elements transferred if constant_time_size is true
//! if cache_last<> is true and pos == end()
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator pos, slist_impl &x, const_iterator f, const_iterator l)
{ return this->splice_after(this->previous(pos), x, x.previous(f), x.previous(l)); }
//! <b>Requires</b>: pos must be a dereferenceable iterator in *this
//! and f and l belong to x and f and l a valid range on x.
//! n == distance(f, l).
//!
//! <b>Effects</b>: Transfers the range [f, l) from list x to this
//! list, before the element pointed by pos.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the sum of elements before pos, f, and l.
//! Linear to the sum of elements before f and l
//! if cache_last<> is true and pos == end().
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator pos, slist_impl &x, const_iterator f, const_iterator l, size_type n)
{ return this->splice_after(this->previous(pos), x, x.previous(f), x.previous(l), n); }
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the predicate throws. Basic guarantee.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
//!
//! <b>Note</b>: Iterators and references are not invalidated
template<class Predicate>
void sort(Predicate p)
{
if (node_traits::get_next(node_traits::get_next(this->get_root_node()))
!= this->get_root_node()) {
slist_impl carry(this->priv_value_traits());
detail::array_initializer<slist_impl, 64> counter(this->priv_value_traits());
int fill = 0;
const_iterator last_inserted;
while(!this->empty()){
last_inserted = this->cbegin();
carry.splice_after(carry.cbefore_begin(), *this, this->cbefore_begin());
int i = 0;
while(i < fill && !counter[i].empty()) {
carry.swap(counter[i]);
carry.merge(counter[i++], p, &last_inserted);
}
BOOST_INTRUSIVE_INVARIANT_ASSERT(counter[i].empty());
const_iterator last_element(carry.previous(last_inserted, carry.end()));
if(constant_time_size){
counter[i].splice_after( counter[i].cbefore_begin(), carry
, carry.cbefore_begin(), last_element
, carry.size());
}
else{
counter[i].splice_after( counter[i].cbefore_begin(), carry
, carry.cbefore_begin(), last_element);
}
if(i == fill)
++fill;
}
for (int i = 1; i < fill; ++i)
counter[i].merge(counter[i-1], p, &last_inserted);
--fill;
const_iterator last_element(counter[fill].previous(last_inserted, counter[fill].end()));
if(constant_time_size){
this->splice_after( cbefore_begin(), counter[fill], counter[fill].cbefore_begin()
, last_element, counter[fill].size());
}
else{
this->splice_after( cbefore_begin(), counter[fill], counter[fill].cbefore_begin()
, last_element);
}
}
}
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or std::less<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
void sort()
{ this->sort(std::less<value_type>()); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Returns</b>: Nothing.
//!
//! <b>Throws</b>: If the predicate throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
//!
//! <b>Additional note</b>: If optional "l" argument is passed, it is assigned
//! to an iterator to the last transferred value or end() is x is empty.
template<class Predicate>
void merge(slist_impl& x, Predicate p, const_iterator *l = 0)
{
const_iterator e(this->cend()), ex(x.cend()), bb(this->cbefore_begin()),
bb_next;
if(l) *l = e.unconst();
while(!x.empty()){
const_iterator ibx_next(x.cbefore_begin()), ibx(ibx_next++);
while (++(bb_next = bb) != e && !p(*ibx_next, *bb_next)){
bb = bb_next;
}
if(bb_next == e){
//Now transfer the rest to the end of the container
this->splice_after(bb, x, l);
break;
}
else{
size_type n(0);
do{
ibx = ibx_next; ++n;
} while(++(ibx_next = ibx) != ex && p(*ibx_next, *bb_next));
this->splice_after(bb, x, x.before_begin(), ibx, n);
if(l) *l = ibx;
}
}
}
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this according to std::less<value_type>. The merge is stable;
//! that is, if an element from *this is equivalent to one from x, then the element
//! from *this will precede the one from x.
//!
//! <b>Throws</b>: if std::less<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void merge(slist_impl& x)
{ this->merge(x, std::less<value_type>()); }
//! <b>Effects</b>: Reverses the order of elements in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear to the contained elements.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void reverse()
{
if(cache_last && !this->empty()){
this->set_last_node(node_traits::get_next(this->get_root_node()));
}
this->priv_reverse(detail::bool_<linear>());
}
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//! No destructors are called.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid. This function is
//! linear time: it performs exactly size() comparisons for equality.
void remove(const_reference value)
{ this->remove_if(detail::equal_to_value<const_reference>(value)); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Disposer>
void remove_and_dispose(const_reference value, Disposer disposer)
{ this->remove_and_dispose_if(detail::equal_to_value<const_reference>(value), disposer); }
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied. No destructors are called.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Pred>
void remove_if(Pred pred)
{
const node_ptr bbeg = this->get_root_node();
typename node_algorithms::stable_partition_info info;
node_algorithms::stable_partition
(bbeg, this->get_end_node(), detail::key_nodeptr_comp<Pred, value_traits>(pred, &this->priv_value_traits()), info);
//After cache last is set, slist invariants are preserved...
if(cache_last){
this->set_last_node(info.new_last_node);
}
//...so erase can be safely called
this->erase_after( const_iterator(bbeg, this->priv_value_traits_ptr())
, const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr())
, info.num_1st_partition);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If pred throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Pred, class Disposer>
void remove_and_dispose_if(Pred pred, Disposer disposer)
{
const node_ptr bbeg = this->get_root_node();
typename node_algorithms::stable_partition_info info;
node_algorithms::stable_partition
(bbeg, this->get_end_node(), detail::key_nodeptr_comp<Pred, value_traits>(pred, &this->priv_value_traits()), info);
//After cache last is set, slist invariants are preserved...
if(cache_last){
this->set_last_node(info.new_last_node);
}
//...so erase can be safely called
this->erase_after_and_dispose( const_iterator(bbeg, this->priv_value_traits_ptr())
, const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr())
, disposer);
}
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list. No destructors are called.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons calls to pred()).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void unique()
{ this->unique_and_dispose(std::equal_to<value_type>(), detail::null_disposer()); }
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! No destructors are called.
//!
//! <b>Throws</b>: If the predicate throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class BinaryPredicate>
void unique(BinaryPredicate pred)
{ this->unique_and_dispose(pred, detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If std::equal_to<value_type> throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class Disposer>
void unique_and_dispose(Disposer disposer)
{ this->unique(std::equal_to<value_type>(), disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//! Disposer::operator()(pointer) is called for every removed element.
//!
//! <b>Throws</b>: If the predicate throws. Basic guarantee.
//!
//! <b>Complexity</b>: Linear time (size()-1) comparisons equality comparisons.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template<class BinaryPredicate, class Disposer>
void unique_and_dispose(BinaryPredicate pred, Disposer disposer)
{
const_iterator end_n(this->cend());
const_iterator bcur(this->cbegin());
if(bcur != end_n){
const_iterator cur(bcur);
++cur;
while(cur != end_n) {
if (pred(*bcur, *cur)){
cur = this->erase_after_and_dispose(bcur, disposer);
}
else{
bcur = cur;
++cur;
}
}
if(cache_last){
this->set_last_node(bcur.pointed_node());
}
}
}
//! <b>Requires</b>: value must be a reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns a const_iterator pointing to the element
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
//! This static function is available only if the <i>value traits</i>
//! is stateless.
static iterator s_iterator_to(reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
return iterator (value_traits::to_node_ptr(value), const_value_traits_ptr());
}
//! <b>Requires</b>: value must be a const reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns an iterator pointing to the element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
//! This static function is available only if the <i>value traits</i>
//! is stateless.
static const_iterator s_iterator_to(const_reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
reference r =*detail::uncast(pointer_traits<const_pointer>::pointer_to(value));
return const_iterator(value_traits::to_node_ptr(r), const_value_traits_ptr());
}
//! <b>Requires</b>: value must be a reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns a const_iterator pointing to the element
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
iterator iterator_to(reference value)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(linear || !node_algorithms::inited(this->priv_value_traits().to_node_ptr(value)));
return iterator (this->priv_value_traits().to_node_ptr(value), this->priv_value_traits_ptr());
}
//! <b>Requires</b>: value must be a const reference to a value inserted in a list.
//!
//! <b>Effects</b>: This function returns an iterator pointing to the element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators and references are not invalidated.
const_iterator iterator_to(const_reference value) const
{
reference r =*detail::uncast(pointer_traits<const_pointer>::pointer_to(value));
BOOST_INTRUSIVE_INVARIANT_ASSERT (linear || !node_algorithms::inited(this->priv_value_traits().to_node_ptr(r)));
return const_iterator(this->priv_value_traits().to_node_ptr(r), this->priv_value_traits_ptr());
}
//! <b>Returns</b>: The iterator to the element before i in the list.
//! Returns the end-iterator, if either i is the begin-iterator or the
//! list is empty.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before i.
//! Constant if cache_last<> is true and i == end().
iterator previous(iterator i)
{ return this->previous(this->cbefore_begin(), i); }
//! <b>Returns</b>: The const_iterator to the element before i in the list.
//! Returns the end-const_iterator, if either i is the begin-const_iterator or
//! the list is empty.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before i.
//! Constant if cache_last<> is true and i == end().
const_iterator previous(const_iterator i) const
{ return this->previous(this->cbefore_begin(), i); }
//! <b>Returns</b>: The iterator to the element before i in the list,
//! starting the search on element after prev_from.
//! Returns the end-iterator, if either i is the begin-iterator or the
//! list is empty.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before i.
//! Constant if cache_last<> is true and i == end().
iterator previous(const_iterator prev_from, iterator i)
{ return this->previous(prev_from, const_iterator(i)).unconst(); }
//! <b>Returns</b>: The const_iterator to the element before i in the list,
//! starting the search on element after prev_from.
//! Returns the end-const_iterator, if either i is the begin-const_iterator or
//! the list is empty.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before i.
//! Constant if cache_last<> is true and i == end().
const_iterator previous(const_iterator prev_from, const_iterator i) const
{
if(cache_last && (i.pointed_node() == this->get_end_node())){
return const_iterator(detail::uncast(this->get_last_node()), this->priv_value_traits_ptr());
}
return const_iterator
(node_algorithms::get_previous_node
(prev_from.pointed_node(), i.pointed_node()), this->priv_value_traits_ptr());
}
///@cond
//! <b>Requires</b>: prev_pos must be a dereferenceable iterator in *this or be
//! before_begin(), and f and before_l belong to another slist.
//!
//! <b>Effects</b>: Transfers the range [f, before_l] to this
//! list, after the element pointed by prev_pos.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements transferred
//! if constant_time_size is true. Constant-time otherwise.
//!
//! <b>Note</b>: Iterators of values obtained from the list that owned f and before_l now
//! point to elements of this list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Warning</b>: Experimental function, don't use it!
void incorporate_after(const_iterator prev_pos, const node_ptr & f, const node_ptr & before_l)
{
if(constant_time_size)
this->incorporate_after(prev_pos, f, before_l, node_algorithms::distance(f.pointed_node(), before_l.pointed_node())+1);
else
this->priv_incorporate_after(prev_pos.pointed_node(), f, before_l);
}
//! <b>Requires</b>: prev_pos must be a dereferenceable iterator in *this or be
//! before_begin(), and f and before_l belong to another slist.
//! n == distance(f, before_l) + 1.
//!
//! <b>Effects</b>: Transfers the range [f, before_l] to this
//! list, after the element pointed by prev_pos.
//! No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: Iterators of values obtained from the list that owned f and before_l now
//! point to elements of this list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Warning</b>: Experimental function, don't use it!
void incorporate_after(const_iterator prev_pos, const node_ptr & f, const node_ptr & before_l, size_type n)
{
if(n){
BOOST_INTRUSIVE_INVARIANT_ASSERT(n > 0);
BOOST_INTRUSIVE_INVARIANT_ASSERT
(size_type(boost::intrusive::iterator_distance
( iterator(f, this->priv_value_traits_ptr())
, iterator(before_l, this->priv_value_traits_ptr())))
+1 == n);
this->priv_incorporate_after(prev_pos.pointed_node(), f, before_l);
if(constant_time_size){
this->priv_size_traits().increase(n);
}
}
}
///@endcond
//! <b>Effects</b>: Asserts the integrity of the container.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Note</b>: The method has no effect when asserts are turned off (e.g., with NDEBUG).
//! Experimental function, interface might change in future versions.
void check() const
{
const_node_ptr header_ptr = get_root_node();
// header's next is never null
BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_next(header_ptr));
if (node_traits::get_next(header_ptr) == header_ptr)
{
if (constant_time_size)
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == 0);
return;
}
size_t node_count = 0;
const_node_ptr p = header_ptr;
while (true)
{
const_node_ptr next_p = node_traits::get_next(p);
if (!linear)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p);
}
else
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p != header_ptr);
}
if ((!linear && next_p == header_ptr) || (linear && !next_p))
{
if (cache_last)
BOOST_INTRUSIVE_INVARIANT_ASSERT(get_last_node() == p);
break;
}
p = next_p;
++node_count;
}
if (constant_time_size)
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == node_count);
}
friend bool operator==(const slist_impl &x, const slist_impl &y)
{
if(constant_time_size && x.size() != y.size()){
return false;
}
return ::boost::intrusive::algo_equal(x.cbegin(), x.cend(), y.cbegin(), y.cend());
}
friend bool operator!=(const slist_impl &x, const slist_impl &y)
{ return !(x == y); }
friend bool operator<(const slist_impl &x, const slist_impl &y)
{ return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
friend bool operator>(const slist_impl &x, const slist_impl &y)
{ return y < x; }
friend bool operator<=(const slist_impl &x, const slist_impl &y)
{ return !(y < x); }
friend bool operator>=(const slist_impl &x, const slist_impl &y)
{ return !(x < y); }
friend void swap(slist_impl &x, slist_impl &y)
{ x.swap(y); }
private:
void priv_splice_after(node_ptr prev_pos_n, slist_impl &x, node_ptr before_f_n, node_ptr before_l_n)
{
if (cache_last && (before_f_n != before_l_n)){
if(prev_pos_n == this->get_last_node()){
this->set_last_node(before_l_n);
}
if(&x != this && node_traits::get_next(before_l_n) == x.get_end_node()){
x.set_last_node(before_f_n);
}
}
node_algorithms::transfer_after(prev_pos_n, before_f_n, before_l_n);
}
void priv_incorporate_after(node_ptr prev_pos_n, node_ptr first_n, node_ptr before_l_n)
{
if(cache_last){
if(prev_pos_n == this->get_last_node()){
this->set_last_node(before_l_n);
}
}
node_algorithms::incorporate_after(prev_pos_n, first_n, before_l_n);
}
void priv_reverse(detail::bool_<false>)
{ node_algorithms::reverse(this->get_root_node()); }
void priv_reverse(detail::bool_<true>)
{
node_ptr new_first = node_algorithms::reverse
(node_traits::get_next(this->get_root_node()));
node_traits::set_next(this->get_root_node(), new_first);
}
void priv_shift_backwards(size_type n, detail::bool_<false>)
{
node_ptr l = node_algorithms::move_forward(this->get_root_node(), (std::size_t)n);
if(cache_last && l){
this->set_last_node(l);
}
}
void priv_shift_backwards(size_type n, detail::bool_<true>)
{
std::pair<node_ptr, node_ptr> ret(
node_algorithms::move_first_n_forward
(node_traits::get_next(this->get_root_node()), (std::size_t)n));
if(ret.first){
node_traits::set_next(this->get_root_node(), ret.first);
if(cache_last){
this->set_last_node(ret.second);
}
}
}
void priv_shift_forward(size_type n, detail::bool_<false>)
{
node_ptr l = node_algorithms::move_backwards(this->get_root_node(), (std::size_t)n);
if(cache_last && l){
this->set_last_node(l);
}
}
void priv_shift_forward(size_type n, detail::bool_<true>)
{
std::pair<node_ptr, node_ptr> ret(
node_algorithms::move_first_n_backwards
(node_traits::get_next(this->get_root_node()), (std::size_t)n));
if(ret.first){
node_traits::set_next(this->get_root_node(), ret.first);
if(cache_last){
this->set_last_node(ret.second);
}
}
}
static void priv_swap_cache_last(slist_impl *this_impl, slist_impl *other_impl)
{
bool other_was_empty = false;
if(this_impl->empty()){
//Check if both are empty or
if(other_impl->empty())
return;
//If this is empty swap pointers
slist_impl *tmp = this_impl;
this_impl = other_impl;
other_impl = tmp;
other_was_empty = true;
}
else{
other_was_empty = other_impl->empty();
}
//Precondition: this is not empty
node_ptr other_old_last(other_impl->get_last_node());
node_ptr other_bfirst(other_impl->get_root_node());
node_ptr this_bfirst(this_impl->get_root_node());
node_ptr this_old_last(this_impl->get_last_node());
//Move all nodes from this to other's beginning
node_algorithms::transfer_after(other_bfirst, this_bfirst, this_old_last);
other_impl->set_last_node(this_old_last);
if(other_was_empty){
this_impl->set_last_node(this_bfirst);
}
else{
//Move trailing nodes from other to this
node_algorithms::transfer_after(this_bfirst, this_old_last, other_old_last);
this_impl->set_last_node(other_old_last);
}
}
//circular version
static void priv_swap_lists(node_ptr this_node, node_ptr other_node, detail::bool_<false>)
{ node_algorithms::swap_nodes(this_node, other_node); }
//linear version
static void priv_swap_lists(node_ptr this_node, node_ptr other_node, detail::bool_<true>)
{ node_algorithms::swap_trailing_nodes(this_node, other_node); }
static slist_impl &priv_container_from_end_iterator(const const_iterator &end_iterator)
{
//Obtaining the container from the end iterator is not possible with linear
//singly linked lists (because "end" is represented by the null pointer)
BOOST_STATIC_ASSERT(!linear);
BOOST_STATIC_ASSERT((has_container_from_iterator));
node_ptr p = end_iterator.pointed_node();
header_holder_type* h = header_holder_type::get_holder(p);
header_holder_plus_last_t* hpl = detail::parent_from_member< header_holder_plus_last_t, header_holder_type>
(h, &header_holder_plus_last_t::header_holder_);
root_plus_size* r = static_cast< root_plus_size* >(hpl);
data_t *d = detail::parent_from_member<data_t, root_plus_size>
( r, &data_t::root_plus_size_);
slist_impl *s = detail::parent_from_member<slist_impl, data_t>(d, &slist_impl::data_);
return *s;
}
};
//! Helper metafunction to define a \c slist that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class ...Options>
#else
template<class T, class O1 = void, class O2 = void, class O3 = void, class O4 = void, class O5 = void, class O6 = void>
#endif
struct make_slist
{
/// @cond
typedef typename pack_options
< slist_defaults,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6
#else
Options...
#endif
>::type packed_options;
typedef typename detail::get_value_traits
<T, typename packed_options::proto_value_traits>::type value_traits;
typedef slist_impl
< value_traits
, typename packed_options::size_type
, (std::size_t(packed_options::linear)*slist_bool_flags::linear_pos)
|(std::size_t(packed_options::constant_time_size)*slist_bool_flags::constant_time_size_pos)
|(std::size_t(packed_options::cache_last)*slist_bool_flags::cache_last_pos)
, typename packed_options::header_holder_type
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class O1, class O2, class O3, class O4, class O5, class O6>
#else
template<class T, class ...Options>
#endif
class slist
: public make_slist<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6
#else
Options...
#endif
>::type
{
typedef typename make_slist
<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6
#else
Options...
#endif
>::type Base;
//Assert if passed value traits are compatible with the type
BOOST_STATIC_ASSERT((detail::is_same<typename Base::value_traits::value_type, T>::value));
BOOST_MOVABLE_BUT_NOT_COPYABLE(slist)
public:
typedef typename Base::value_traits value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
typedef typename Base::size_type size_type;
typedef typename Base::node_ptr node_ptr;
BOOST_INTRUSIVE_FORCEINLINE slist()
: Base()
{}
BOOST_INTRUSIVE_FORCEINLINE explicit slist(const value_traits &v_traits)
: Base(v_traits)
{}
struct incorporate_t{};
BOOST_INTRUSIVE_FORCEINLINE slist( const node_ptr & f, const node_ptr & before_l
, size_type n, const value_traits &v_traits = value_traits())
: Base(f, before_l, n, v_traits)
{}
template<class Iterator>
BOOST_INTRUSIVE_FORCEINLINE slist(Iterator b, Iterator e, const value_traits &v_traits = value_traits())
: Base(b, e, v_traits)
{}
BOOST_INTRUSIVE_FORCEINLINE slist(BOOST_RV_REF(slist) x)
: Base(BOOST_MOVE_BASE(Base, x))
{}
BOOST_INTRUSIVE_FORCEINLINE slist& operator=(BOOST_RV_REF(slist) x)
{ return static_cast<slist &>(this->Base::operator=(BOOST_MOVE_BASE(Base, x))); }
template <class Cloner, class Disposer>
BOOST_INTRUSIVE_FORCEINLINE void clone_from(const slist &src, Cloner cloner, Disposer disposer)
{ Base::clone_from(src, cloner, disposer); }
template <class Cloner, class Disposer>
BOOST_INTRUSIVE_FORCEINLINE void clone_from(BOOST_RV_REF(slist) src, Cloner cloner, Disposer disposer)
{ Base::clone_from(BOOST_MOVE_BASE(Base, src), cloner, disposer); }
BOOST_INTRUSIVE_FORCEINLINE static slist &container_from_end_iterator(iterator end_iterator)
{ return static_cast<slist &>(Base::container_from_end_iterator(end_iterator)); }
BOOST_INTRUSIVE_FORCEINLINE static const slist &container_from_end_iterator(const_iterator end_iterator)
{ return static_cast<const slist &>(Base::container_from_end_iterator(end_iterator)); }
};
#endif
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_SLIST_HPP