WSJT-X/boost/boost/python/numpy/ufunc.hpp

207 lines
6.6 KiB
C++

// Copyright Jim Bosch 2010-2012.
// Copyright Stefan Seefeld 2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef boost_python_numpy_ufunc_hpp_
#define boost_python_numpy_ufunc_hpp_
/**
* @brief Utilities to create ufunc-like broadcasting functions out of C++ functors.
*/
#include <boost/python.hpp>
#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
#include <boost/python/numpy/dtype.hpp>
#include <boost/python/numpy/ndarray.hpp>
#include <boost/python/numpy/config.hpp>
namespace boost { namespace python { namespace numpy {
/**
* @brief A boost.python "object manager" (subclass of object) for PyArray_MultiIter.
*
* multi_iter is a Python object, but a very low-level one. It should generally only be used
* in loops of the form:
* @code
* while (iter.not_done()) {
* ...
* iter.next();
* }
* @endcode
*
* @todo I can't tell if this type is exposed in Python anywhere; if it is, we should use that name.
* It's more dangerous than most object managers, however - maybe it actually belongs in
* a detail namespace?
*/
class BOOST_NUMPY_DECL multi_iter : public object
{
public:
BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, object);
/// @brief Increment the iterator.
void next();
/// @brief Check if the iterator is at its end.
bool not_done() const;
/// @brief Return a pointer to the element of the nth broadcasted array.
char * get_data(int n) const;
/// @brief Return the number of dimensions of the broadcasted array expression.
int get_nd() const;
/// @brief Return the shape of the broadcasted array expression as an array of integers.
Py_intptr_t const * get_shape() const;
/// @brief Return the shape of the broadcasted array expression in the nth dimension.
Py_intptr_t shape(int n) const;
};
/// @brief Construct a multi_iter over a single sequence or scalar object.
BOOST_NUMPY_DECL multi_iter make_multi_iter(object const & a1);
/// @brief Construct a multi_iter by broadcasting two objects.
BOOST_NUMPY_DECL multi_iter make_multi_iter(object const & a1, object const & a2);
/// @brief Construct a multi_iter by broadcasting three objects.
BOOST_NUMPY_DECL multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3);
/**
* @brief Helps wrap a C++ functor taking a single scalar argument as a broadcasting ufunc-like
* Python object.
*
* Typical usage looks like this:
* @code
* struct TimesPI
* {
* typedef double argument_type;
* typedef double result_type;
* double operator()(double input) const { return input * M_PI; }
* };
*
* BOOST_PYTHON_MODULE(example)
* {
* class_< TimesPI >("TimesPI")
* .def("__call__", unary_ufunc<TimesPI>::make());
* }
* @endcode
*
*/
template <typename TUnaryFunctor,
typename TArgument=typename TUnaryFunctor::argument_type,
typename TResult=typename TUnaryFunctor::result_type>
struct unary_ufunc
{
/**
* @brief A C++ function with object arguments that broadcasts its arguments before
* passing them to the underlying C++ functor.
*/
static object call(TUnaryFunctor & self, object const & input, object const & output)
{
dtype in_dtype = dtype::get_builtin<TArgument>();
dtype out_dtype = dtype::get_builtin<TResult>();
ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
ndarray out_array = ! output.is_none() ?
from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
: zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
multi_iter iter = make_multi_iter(in_array, out_array);
while (iter.not_done())
{
TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
*result = self(*argument);
iter.next();
}
return out_array.scalarize();
}
/**
* @brief Construct a boost.python function object from call() with reasonable keyword names.
*
* Users will often want to specify their own keyword names with the same signature, but this
* is a convenient shortcut.
*/
static object make()
{
return make_function(call, default_call_policies(), (arg("input"), arg("output")=object()));
}
};
/**
* @brief Helps wrap a C++ functor taking a pair of scalar arguments as a broadcasting ufunc-like
* Python object.
*
* Typical usage looks like this:
* @code
* struct CosSum
* {
* typedef double first_argument_type;
* typedef double second_argument_type;
* typedef double result_type;
* double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
* };
*
* BOOST_PYTHON_MODULE(example)
* {
* class_< CosSum >("CosSum")
* .def("__call__", binary_ufunc<CosSum>::make());
* }
* @endcode
*
*/
template <typename TBinaryFunctor,
typename TArgument1=typename TBinaryFunctor::first_argument_type,
typename TArgument2=typename TBinaryFunctor::second_argument_type,
typename TResult=typename TBinaryFunctor::result_type>
struct binary_ufunc
{
static object
call(TBinaryFunctor & self, object const & input1, object const & input2,
object const & output)
{
dtype in1_dtype = dtype::get_builtin<TArgument1>();
dtype in2_dtype = dtype::get_builtin<TArgument2>();
dtype out_dtype = dtype::get_builtin<TResult>();
ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
multi_iter iter = make_multi_iter(in1_array, in2_array);
ndarray out_array = !output.is_none()
? from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
: zeros(iter.get_nd(), iter.get_shape(), out_dtype);
iter = make_multi_iter(in1_array, in2_array, out_array);
while (iter.not_done())
{
TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
*result = self(*argument1, *argument2);
iter.next();
}
return out_array.scalarize();
}
static object make()
{
return make_function(call, default_call_policies(),
(arg("input1"), arg("input2"), arg("output")=object()));
}
};
} // namespace boost::python::numpy
namespace converter
{
NUMPY_OBJECT_MANAGER_TRAITS(numpy::multi_iter);
}}} // namespace boost::python::converter
#endif