WSJT-X/soundin.cpp
Joe Taylor 0a7adf9b44 1. Fix a longstanding (and evidently latent) bug in widegraph.cpp.
2. Add basic proof-of-concept code that uses QAudioInput instead of
PortAudio for sound input.  By default, this test code is not active,
and it compiles using PortAudio.  To compile using QAudio, uncomment
the line

#DEFINES += QAUDIO_INPUT

in wsjtx.pro.  Note that device selection in the QAudio code is presently
hard-wired to use the default input device.  You can change this 
choice on line 267 in soundin.cpp.



git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3510 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2013-07-30 20:36:14 +00:00

388 lines
10 KiB
C++

#ifndef QAUDIO_INPUT
#include "soundin.h"
#include <stdexcept>
#define FRAMES_PER_BUFFER 1024
//#define NSMAX 1365
#define NSMAX 6827
#define NTMAX 120
extern "C" {
#include <portaudio.h>
extern struct {
float ss[184*NSMAX]; //This is "common/jt9com/..." in fortran
float savg[NSMAX];
// float c0[2*NTMAX*1500];
short int d2[NTMAX*12000];
int nutc; //UTC as integer, HHMM
int ndiskdat; //1 ==> data read from *.wav file
int ntrperiod; //TR period (seconds)
int mousefqso; //User-selected QSO freq (kHz)
int newdat; //1 ==> new data, must do long FFT
int npts8; //npts in c0() array
int nfa; //Low decode limit (Hz)
int nfb; //High decode limit (Hz)
int ntol; //+/- decoding range around fQSO (Hz)
int kin;
int nzhsym;
int nsave;
int nagain;
int ndepth;
int ntxmode;
int nmode;
char datetime[20];
} jt9com_;
}
//--------------------------------------------------------------- a2dCallback
int a2dCallback( const void *inputBuffer, void * /* outputBuffer */,
unsigned long framesToProcess,
const PaStreamCallbackTimeInfo * /* timeInfo */,
PaStreamCallbackFlags statusFlags,
void *userData )
// This routine called by the PortAudio engine when samples are available.
// It may be called at interrupt level, so don't do anything
// that could mess up the system like calling malloc() or free().
{
SoundInput::CallbackData * udata = reinterpret_cast<SoundInput::CallbackData *>(userData);
int nbytes,k;
udata->ncall++;
if( (statusFlags&paInputOverflow) != 0) {
qDebug() << "Input Overflow in a2dCallback";
}
if(udata->bzero) { //Start of a new Rx sequence
udata->kin=0; //Reset buffer pointer
udata->bzero=false;
}
nbytes=2*framesToProcess; //Bytes per frame
k=udata->kin;
if(udata->monitoring) {
memcpy(&jt9com_.d2[k],inputBuffer,nbytes); //Copy all samples to d2
}
udata->kin += framesToProcess;
jt9com_.kin=udata->kin;
return paContinue;
}
SoundInput::SoundInput()
: m_inStream(0),
m_dataSinkBusy(false),
m_TRperiod(60),
m_nsps(6912),
m_monitoring(false),
m_intervalTimer(this)
{
connect(&m_intervalTimer, &QTimer::timeout, this, &SoundInput::intervalNotify);
}
void SoundInput::start(qint32 device)
{
stop();
//---------------------------------------------------- Soundcard Setup
PaError paerr;
PaStreamParameters inParam;
m_callbackData.kin=0; //Buffer pointer
m_callbackData.ncall=0; //Number of callbacks
m_callbackData.bzero=false; //Flag to request reset of kin
m_callbackData.monitoring=m_monitoring;
inParam.device=device; //### Input Device Number ###
inParam.channelCount=1; //Number of analog channels
inParam.sampleFormat=paInt16; //Get i*2 from Portaudio
inParam.suggestedLatency=0.05;
inParam.hostApiSpecificStreamInfo=NULL;
paerr=Pa_IsFormatSupported(&inParam,NULL,12000.0);
if(paerr<0) {
emit error("PortAudio says requested soundcard format not supported.");
// return;
}
qDebug() << "";
paerr=Pa_OpenStream(&m_inStream, //Input stream
&inParam, //Input parameters
NULL, //No output parameters
12000.0, //Sample rate
FRAMES_PER_BUFFER, //Frames per buffer
// paClipOff+paDitherOff, //No clipping or dithering
paClipOff, //No clipping
a2dCallback, //Input callback routine
&m_callbackData); //userdata
paerr=Pa_StartStream(m_inStream);
if(paerr<0) {
emit error("Failed to start audio input stream.");
return;
}
m_ntr0 = 99; // initial value higher than any expected
m_nBusy = 0;
m_intervalTimer.start(100);
m_ms0 = QDateTime::currentMSecsSinceEpoch();
m_nsps0 = 0;
}
void SoundInput::intervalNotify()
{
m_callbackData.monitoring=m_monitoring;
qint64 ms = QDateTime::currentMSecsSinceEpoch();
m_SamFacIn=1.0;
if(m_callbackData.ncall>100) {
m_SamFacIn=m_callbackData.ncall*FRAMES_PER_BUFFER*1000.0/(12000.0*(ms-m_ms0-50));
}
ms=ms % 86400000;
int nsec = ms/1000; // Time according to this computer
int ntr = nsec % m_TRperiod;
// Reset buffer pointer and symbol number at start of minute
if(ntr < m_ntr0 or !m_monitoring or m_nsps!=m_nsps0) {
m_nstep0=0;
m_nsps0=m_nsps;
m_callbackData.bzero=true;
}
int k=m_callbackData.kin;
if(m_monitoring) {
int kstep=m_nsps/2;
// m_step=k/kstep;
m_step=(k-1)/kstep;
if(m_step != m_nstep0) {
if(m_dataSinkBusy) {
m_nBusy++;
} else {
// m_dataSinkBusy=true;
// emit readyForFFT(k); //Signal to compute new FFTs
emit readyForFFT(k-1); //Signal to compute new FFTs
}
m_nstep0=m_step;
}
}
m_ntr0=ntr;
}
SoundInput::~SoundInput()
{
if (m_inStream)
{
Pa_CloseStream(m_inStream), m_inStream = 0;
}
}
void SoundInput::stop()
{
m_intervalTimer.stop();
if (m_inStream)
{
Pa_StopStream(m_inStream);
Pa_CloseStream(m_inStream), m_inStream = 0;
}
}
void SoundInput::setMonitoring(bool b)
{
m_monitoring = b;
}
#else // QAUDIO_INPUT
#include "soundin.h"
#include <stdexcept>
#define FRAMES_PER_BUFFER 1024
//#define NSMAX 1365
#define NSMAX 6827
#define NTMAX 120
extern "C" {
#include <portaudio.h>
extern struct {
float ss[184*NSMAX]; //This is "common/jt9com/..." in fortran
float savg[NSMAX];
// float c0[2*NTMAX*1500];
short int d2[NTMAX*12000];
int nutc; //UTC as integer, HHMM
int ndiskdat; //1 ==> data read from *.wav file
int ntrperiod; //TR period (seconds)
int mousefqso; //User-selected QSO freq (kHz)
int newdat; //1 ==> new data, must do long FFT
int npts8; //npts in c0() array
int nfa; //Low decode limit (Hz)
int nfb; //High decode limit (Hz)
int ntol; //+/- decoding range around fQSO (Hz)
int kin;
int nzhsym;
int nsave;
int nagain;
int ndepth;
int ntxmode;
int nmode;
char datetime[20];
} jt9com_;
}
QString reportAudioError(QAudio::Error audioError)
{
switch (audioError) {
case QAudio::NoError: Q_ASSERT(false);
case QAudio::OpenError: return QObject::tr(
"An error opening the audio device has occurred.");
case QAudio::IOError: return QObject::tr(
"An error occurred during read/write of audio device.");
case QAudio::UnderrunError: return QObject::tr(
"Audio data not being fed to the audio device fast enough.");
case QAudio::FatalError: return QObject::tr(
"Non-recoverable error, audio device not usable at this time.");
}
Q_ASSERT(false);
return "";
}
SoundInput::SoundInput()
: m_dataSinkBusy(false),
m_TRperiod(60),
m_nsps(6912),
m_monitoring(false),
m_intervalTimer(this)
{
connect(&m_intervalTimer, &QTimer::timeout, this, &SoundInput::intervalNotify);
}
void SoundInput::start(qint32 device)
{
stop();
//---------------------------------------------------- Soundcard Setup
m_callbackData.kin=0; //Buffer pointer
m_callbackData.ncall=0; //Number of callbacks
m_callbackData.bzero=false; //Flag to request reset of kin
m_callbackData.monitoring=m_monitoring;
//### Temporary: hardwired device selection
QAudioDeviceInfo DeviceInfo;
QList<QAudioDeviceInfo> m_InDevices;
QAudioDeviceInfo m_InDeviceInfo;
m_InDevices = DeviceInfo.availableDevices(QAudio::AudioInput);
inputDevice = m_InDevices.at(0);
//###
const char* pcmCodec = "audio/pcm";
QAudioFormat audioFormat = inputDevice.preferredFormat();
audioFormat.setChannelCount(1);
audioFormat.setCodec(pcmCodec);
audioFormat.setSampleRate(12000);
audioFormat.setSampleType(QAudioFormat::SignedInt);
audioFormat.setSampleSize(16);
if (!audioFormat.isValid()) {
emit error(tr("Requested audio format is not available."));
return;
}
audioInput = new QAudioInput(inputDevice, audioFormat);
// audioInput2=audioInput;
if (audioInput->error() != QAudio::NoError) {
emit error(reportAudioError(audioInput->error()));
return;
}
stream = audioInput->start();
m_ntr0 = 99; // initial value higher than any expected
m_nBusy = 0;
m_intervalTimer.start(100);
m_ms0 = QDateTime::currentMSecsSinceEpoch();
m_nsps0 = 0;
}
void SoundInput::intervalNotify()
{
m_callbackData.monitoring=m_monitoring;
qint64 ms = QDateTime::currentMSecsSinceEpoch();
ms=ms % 86400000;
int nsec = ms/1000; // Time according to this computer
int ntr = nsec % m_TRperiod;
static int k=0;
// Reset buffer pointer and symbol number at start of minute
if(ntr < m_ntr0 or !m_monitoring or m_nsps!=m_nsps0) {
m_nstep0=0;
m_nsps0=m_nsps;
m_callbackData.bzero=true;
k=0;
}
// int k=m_callbackData.kin;
// How many new samples have been acquired?
const qint32 bytesReady = audioInput->bytesReady();
Q_ASSERT(bytesReady >= 0);
Q_ASSERT(bytesReady % 2 == 0);
if (bytesReady == 0) {
// msleep(50);
return;
}
// Get the new samples
qint32 bytesRead;
qint16 buf0[4096];
bytesRead = stream->read((char*)buf0, bytesReady);
Q_ASSERT(bytesRead <= bytesReady);
if (bytesRead < 0) {
emit error(tr("audio stream QIODevice::read returned -1."));
return;
}
Q_ASSERT(bytesRead % 2 == 0);
// memcpy(jt9com_.d2[k],buf0,bytesRead);
// k+=bytesRead/2;
for(int i=0; i<bytesRead/2; i++) {
jt9com_.d2[k++]=buf0[i];
}
if(m_monitoring) {
int kstep=m_nsps/2;
// m_step=k/kstep;
m_step=(k-1)/kstep;
if(m_step != m_nstep0) {
if(m_dataSinkBusy) {
m_nBusy++;
} else {
// m_dataSinkBusy=true;
// emit readyForFFT(k); //Signal to compute new FFTs
emit readyForFFT(k-1); //Signal to compute new FFTs
}
m_nstep0=m_step;
}
}
m_ntr0=ntr;
}
SoundInput::~SoundInput()
{
/*
if (m_inStream)
{
Pa_CloseStream(m_inStream), m_inStream = 0;
}
*/
}
void SoundInput::stop()
{
m_intervalTimer.stop();
/*
if (m_inStream)
{
Pa_StopStream(m_inStream);
Pa_CloseStream(m_inStream), m_inStream = 0;
}
*/
}
void SoundInput::setMonitoring(bool b)
{
m_monitoring = b;
}
#endif // QAUDIO_INPUT