WSJT-X/Modulator.cpp
Bill Somerville b6559fae7c Added audio channel support.
Audio input can be mono, left of stereo pair or, right of stereo
pair. Audio output can be mono, left of stereo pair, right of stereo
pair or, both of stereo pair (the same output goes to both channels in
both mode). Settings are remembered between sessions.

Stream channel suport is implemented mainly in the new AudioDevice
class which is now the base class of Modulator and Detector.

Audio channels are selected on the configuration screen. Only
supported channel configurations per device can be selected.

Audio output volume (actually attenuation) is now possible from the
GUI. I have added a slider control to the main window; I don't
necessarily propose this as a final release location for the widget as
I understand that changes to the main screen are sensitive. This
location is just a starting suggestion for a trial. The volume
(attenuation) setting is remembered between sessions and is not device
dependent. This addresses all issues of volume setting on *nix
versions since there is no need to use pavucontrol to set audio
levels. The volume (attenuation) action is logarithmic.

Shaped CW keying has been implemented in Modulator although it is
currently disabled as I am not 100% happy wth the implementation. If
you want to try it define the C++ preprocessor macro WSJT_SOFT_KEYING
in your build.

The Modulator instance has been moved to the same thread as the
SoundOutput instance as it should have been since the output callback
already operates in that thread. Cross thread slots are now correctly
called in a thread safe way as a result.

A number of files where in the SVN repository with DOS line endings
which I have removed. SVN users on Windows need set the config for
native line endings so that DOS line endings are automatically
stripped on checkin.

The DevSetup class now holds it's UI o the heap to reduce imapact on
build dependencies.

The application settings are now passed to objects from the main.cpp
file. Management of settings are moved to the responsible classes (top
level windows). This has involved a few settings moving groups so
users will see some settings reverting to default values on the first
run of an update.

Persistance of top level windows geometry and position is now handled
in the recommened manner (constructor for load, closeEvent for store
in modal windows and, hideEvent for store in modeless dialogs).

The MainWindow class now holds its children as members rather than
global variables.

The LogQSO class now hides its implementation and takes responsibility
for its own settings and widows rendering parameters. A new settings
file group is implemented to persist the LogQSO class settings.

The WideGraph class now hides its implementation and manages its own
settings and window rendering parameters.

  --This line, and those below, will be ignored--

M    Modulator.cpp
M    rigclass.cpp
M    widegraph.cpp
M    signalmeter.cpp
M    soundin.cpp
M    soundout.cpp
M    mainwindow.h
M    main.cpp
M    meterwidget.h
M    devsetup.cpp
M    mainwindow.ui
M    Detector.cpp
M    logqso.h
M    rigclass.h
M    mainwindow.cpp
M    meterwidget.cpp
M    soundin.h
M    devsetup.ui
M    wsjtx.pro
M    devsetup.h
M    logqso.cpp
M    Modulator.hpp
M    psk_reporter.cpp
M    killbyname.cpp
M    Detector.hpp
M    signalmeter.h
M    widegraph.h
M    psk_reporter.h
M    soundout.h
M    PSKReporter.h
M    lib/afc65b.f90
M    lib/gran.c
M    lib/usleep.c
M    lib/afc9.f90
M    lib/wrapkarn.c
A    AudioDevice.hpp


git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3542 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2013-08-10 15:29:55 +00:00

258 lines
6.5 KiB
C++

#include "Modulator.hpp"
#include <limits>
#include <qmath.h>
#include <QDateTime>
#include <QDebug>
#include "mainwindow.h"
extern float gran(); // Noise generator (for tests only)
// MUST be an integral factor of 2^16
#define RAMP_INCREMENT 64
#if defined (WSJT_SOFT_KEYING)
# define SOFT_KEYING true
#else
# define SOFT_KEYING false
#endif
double const Modulator::m_twoPi = 2.0 * 3.141592653589793238462;
// float wpm=20.0;
// unsigned m_nspd=1.2*48000.0/wpm;
// m_nspd=3072; //18.75 WPM
unsigned const Modulator::m_nspd = 2048 + 512; // 22.5 WPM
Modulator::Modulator (unsigned frameRate, unsigned periodLengthInSeconds, QObject * parent)
: AudioDevice (parent)
, m_frameRate (frameRate)
, m_period (periodLengthInSeconds)
, m_framesSent (0)
, m_state (Idle)
, m_tuning (false)
, m_muted (false)
, m_phi (0.)
{
qsrand (QDateTime::currentMSecsSinceEpoch()); // Initialize random seed
}
void Modulator::open (unsigned symbolsLength, double framesPerSymbol, unsigned frequency, Channel channel, bool synchronize, double dBSNR)
{
// Time according to this computer which becomes our base time
qint64 ms0 = QDateTime::currentMSecsSinceEpoch() % 86400000;
qDebug () << "Modulator: Using soft keying for CW is " << SOFT_KEYING;;
m_symbolsLength = symbolsLength;
m_framesSent = 0;
m_isym0 = std::numeric_limits<unsigned>::max (); // ensure we set up first symbol tone
m_addNoise = dBSNR < 0.;
m_nsps = framesPerSymbol;
m_frequency = frequency;
m_amp = std::numeric_limits<qint16>::max ();
// noise generator parameters
if (m_addNoise)
{
m_snr = qPow (10.0, 0.05 * (dBSNR - 6.0));
m_fac = 3000.0;
if (m_snr > 1.0)
{
m_fac = 3000.0 / m_snr;
}
}
unsigned mstr = ms0 % (1000 * m_period); // ms in period
m_ic = (mstr / 1000) * m_frameRate; // we start exactly N seconds
// into period where N is the
// next whole second
m_silentFrames = 0;
if (synchronize && !m_tuning) // calculate number of silent frames to send
{
m_silentFrames = m_ic + m_frameRate - (mstr * m_frameRate / 1000);
}
// qDebug () << "Modulator: starting at " << m_ic / m_frameRate << " sec, sending " << m_silentFrames << " silent frames";
AudioDevice::open (QIODevice::ReadOnly, channel);
Q_EMIT stateChanged ((m_state = (synchronize && m_silentFrames) ? Synchronizing : Active));
}
qint64 Modulator::readData (char * data, qint64 maxSize)
{
Q_ASSERT (!(maxSize % static_cast<qint64> (bytesPerFrame ()))); // no torn frames
Q_ASSERT (isOpen ());
qint64 numFrames (maxSize / bytesPerFrame ());
qint16 * samples (reinterpret_cast<qint16 *> (data));
qint16 * end (samples + numFrames * (bytesPerFrame () / sizeof (qint16)));
// qDebug () << "Modulator: " << numFrames << " requested, m_ic = " << m_ic << ", tune mode is " << m_tuning;
switch (m_state)
{
case Synchronizing:
{
if (m_silentFrames) // send silence up to first second
{
numFrames = qMin (m_silentFrames, numFrames);
for ( ; samples != end; samples = load (0, samples)) // silence
{
}
m_silentFrames -= numFrames;
return numFrames * bytesPerFrame ();
}
Q_EMIT stateChanged ((m_state = Active));
m_ramp = 0; // prepare for CW wave shaping
}
// fall through
case Active:
{
unsigned isym (m_tuning ? 0 : m_ic / (4.0 * m_nsps)); // Actual fsample=48000
if (isym >= m_symbolsLength && icw[0] > 0) // start CW condition
{
// Output the CW ID
m_dphi = m_twoPi * m_frequency / m_frameRate;
unsigned const ic0 = m_symbolsLength * 4 * m_nsps;
unsigned j (0);
qint64 framesGenerated (0);
while (samples != end)
{
m_phi += m_dphi;
if (m_phi > m_twoPi)
{
m_phi -= m_twoPi;
}
qint16 sample ((SOFT_KEYING ? qAbs (m_ramp - 1) : (m_ramp ? 32767 : 0)) * qSin (m_phi));
j = (m_ic - ic0 - 1) / m_nspd + 1;
bool l0 (icw[j] && icw[j] <= 1); // first element treated specially as it's a count
j = (m_ic - ic0) / m_nspd + 1;
if ((m_ramp != 0 && m_ramp != std::numeric_limits<qint16>::min ()) || !!icw[j] != l0)
{
if (!!icw[j] != l0)
{
Q_ASSERT (m_ramp == 0 || m_ramp == std::numeric_limits<qint16>::min ());
}
m_ramp += RAMP_INCREMENT; // ramp
}
if (j < NUM_CW_SYMBOLS) // stop condition
{
// if (!m_ramp && !icw[j])
// {
// sample = 0;
// }
samples = load (postProcessSample (sample), samples);
++framesGenerated;
++m_ic;
}
}
if (j > static_cast<unsigned> (icw[0]))
{
Q_EMIT stateChanged ((m_state = Idle));
}
m_framesSent += framesGenerated;
return framesGenerated * bytesPerFrame ();
}
double const baud (12000.0 / m_nsps);
// fade out parameters (no fade out for tuning)
unsigned const i0 = m_tuning ? 999 * m_nsps : (m_symbolsLength - 0.017) * 4.0 * m_nsps;
unsigned const i1 = m_tuning ? 999 * m_nsps : m_symbolsLength * 4.0 * m_nsps;
for (unsigned i = 0; i < numFrames; ++i)
{
isym = m_tuning ? 0 : m_ic / (4.0 * m_nsps); //Actual fsample=48000
if (isym != m_isym0)
{
double toneFrequency = m_frequency + itone[isym] * baud;
m_dphi = m_twoPi * toneFrequency / m_frameRate;
m_isym0 = isym;
}
m_phi += m_dphi;
if (m_phi > m_twoPi)
{
m_phi -= m_twoPi;
}
if (m_ic > i0)
{
m_amp = 0.98 * m_amp;
}
if (m_ic > i1)
{
m_amp = 0.0;
}
samples = load (postProcessSample (m_amp * qSin (m_phi)), samples);
++m_ic;
}
if (m_amp == 0.0) // TODO G4WJS: compare double with zero might not be wise
{
if (icw[0] == 0)
{
// no CW ID to send
Q_EMIT stateChanged ((m_state = Idle));
m_framesSent += numFrames;
return numFrames * bytesPerFrame ();
}
m_phi = 0.0;
}
// done for this chunk - continue on next call
m_framesSent += numFrames;
return numFrames * bytesPerFrame ();
}
Q_EMIT stateChanged ((m_state = Idle));
// fall through
case Idle:
break;
}
Q_ASSERT (Idle == m_state);
return 0;
}
qint16 Modulator::postProcessSample (qint16 sample) const
{
if (m_muted) // silent frame
{
sample = 0;
}
else if (m_addNoise)
{
qint32 s = m_fac * (gran () + sample * m_snr / 32768.0);
if (s > std::numeric_limits<qint16>::max ())
{
s = std::numeric_limits<qint16>::max ();
}
if (s < std::numeric_limits<qint16>::min ())
{
s = std::numeric_limits<qint16>::min ();
}
sample = s;
}
return sample;
}