mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Christopher Kormanyos 2013.
 | |
| // Copyright Paul A. Bristow 2013.
 | |
| // Copyright John Maddock 2013.
 | |
| 
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt or
 | |
| // copy at http://www.boost.org/LICENSE_1_0.txt).
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4512) // assignment operator could not be generated.
 | |
| #  pragma warning (disable : 4996) // assignment operator could not be generated.
 | |
| #endif
 | |
| 
 | |
| #include <iostream>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| #include <algorithm>
 | |
| #include <iomanip>
 | |
| #include <iterator>
 | |
| 
 | |
| // Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
 | |
| // http://mathworld.wolfram.com/BesselFunctionZeros.html
 | |
| // Test values can be calculated using [@wolframalpha.com WolframAplha]
 | |
| // See also http://dlmf.nist.gov/10.21
 | |
| 
 | |
| //[bessel_zero_example_1
 | |
| 
 | |
| /*`This example demonstrates calculating zeros of the Bessel, Neumann and Airy functions.
 | |
| It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
 | |
| a many decimal digit precision. For 50 decimal digit precision we need to include
 | |
| */
 | |
| 
 | |
|   #include <boost/multiprecision/cpp_dec_float.hpp>
 | |
| 
 | |
| /*`and a `typedef` for `float_type` may be convenient
 | |
| (allowing a quick switch to re-compute at built-in `double` or other precision)
 | |
| */
 | |
|   typedef boost::multiprecision::cpp_dec_float_50 float_type;
 | |
| 
 | |
| //`To use the functions for finding zeros of the functions we need
 | |
| 
 | |
|   #include <boost/math/special_functions/bessel.hpp>
 | |
| 
 | |
| //`This file includes the forward declaration signatures for the zero-finding functions:
 | |
| 
 | |
| //  #include <boost/math/special_functions/math_fwd.hpp>
 | |
| 
 | |
| /*`but more details are in the full documentation, for example at
 | |
| [@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions]
 | |
| */
 | |
| 
 | |
| /*`This example shows obtaining both a single zero of the Bessel function,
 | |
| and then placing multiple zeros into a container like `std::vector` by providing an iterator.
 | |
| The signature of the single value function is:
 | |
| 
 | |
|   template <class T>
 | |
|   inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type
 | |
|     cyl_bessel_j_zero(T v,  // Floating-point value for Jv.
 | |
|     int m); // start index.
 | |
| 
 | |
| The result type is controlled by the floating-point type of parameter `v`
 | |
| (but subject to the usual __precision_policy and __promotion_policy).
 | |
| 
 | |
| The signature of multiple zeros function is:
 | |
| 
 | |
|   template <class T, class OutputIterator>
 | |
|   inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
 | |
|                                 int start_index, // 1-based start index.
 | |
|                                 unsigned number_of_zeros,
 | |
|                                 OutputIterator out_it); // iterator into container for zeros.
 | |
| 
 | |
| There is also a version which allows control of the __policy_section for error handling and precision.
 | |
| 
 | |
|   template <class T, class OutputIterator, class Policy>
 | |
|   inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
 | |
|                                 int start_index, // 1-based start index.
 | |
|                                 unsigned number_of_zeros,
 | |
|                                 OutputIterator out_it,
 | |
|                                 const Policy& pol); // iterator into container for zeros.
 | |
| 
 | |
| */
 | |
| //]  [/bessel_zero_example_1]
 | |
| 
 | |
| //[bessel_zero_example_iterator_1]
 | |
| /*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
 | |
| to create a sum of 1/zeros[super 2] by defining a custom output iterator:
 | |
| */
 | |
| 
 | |
| template <class T>
 | |
| struct output_summation_iterator
 | |
| {
 | |
|    output_summation_iterator(T* p) : p_sum(p)
 | |
|    {}
 | |
|    output_summation_iterator& operator*()
 | |
|    { return *this; }
 | |
|     output_summation_iterator& operator++()
 | |
|    { return *this; }
 | |
|    output_summation_iterator& operator++(int)
 | |
|    { return *this; }
 | |
|    output_summation_iterator& operator = (T const& val)
 | |
|    {
 | |
|      *p_sum += 1./ (val * val); // Summing 1/zero^2.
 | |
|      return *this;
 | |
|    }
 | |
| private:
 | |
|    T* p_sum;
 | |
| };
 | |
| 
 | |
| 
 | |
| //] [/bessel_zero_example_iterator_1]
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   try
 | |
|   {
 | |
| //[bessel_zero_example_2]
 | |
| 
 | |
| /*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
 | |
| this will ensure that helpful error messages can be shown when exceptional conditions arise.]
 | |
| 
 | |
| First, evaluate a single Bessel zero.
 | |
| 
 | |
| The precision is controlled by the float-point type of template parameter `T` of `v`
 | |
| so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double).
 | |
| */
 | |
|     double root = boost::math::cyl_bessel_j_zero(0.0, 1);
 | |
|     // Displaying with default precision of 6 decimal digits:
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
 | |
|     // And with all the guaranteed (15) digits:
 | |
|     std::cout.precision(std::numeric_limits<double>::digits10);
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
 | |
| /*`But note that because the parameter `v` controls the precision of the result,
 | |
| `v` [*must be a floating-point type].
 | |
| So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus:
 | |
| ``
 | |
|     root = boost::math::cyl_bessel_j_zero(0, 1);
 | |
| ``
 | |
| with this error message
 | |
| ``
 | |
|   error C2338: Order must be a floating-point type.
 | |
| ``
 | |
| 
 | |
| Optionally, we can use a policy to ignore errors, C-style, returning some value
 | |
| perhaps infinity or NaN, or the best that can be done. (See __user_error_handling).
 | |
| 
 | |
| To create a (possibly unwise!) policy that ignores all errors:
 | |
| */
 | |
| 
 | |
|   typedef boost::math::policies::policy
 | |
|     <
 | |
|       boost::math::policies::domain_error<boost::math::policies::ignore_error>,
 | |
|       boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
 | |
|       boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
 | |
|       boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
 | |
|       boost::math::policies::pole_error<boost::math::policies::ignore_error>,
 | |
|       boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
 | |
|     > ignore_all_policy;
 | |
| 
 | |
|     double inf = std::numeric_limits<double>::infinity();
 | |
|     double nan = std::numeric_limits<double>::quiet_NaN();
 | |
| 
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 0) " << std::endl;
 | |
|     double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 0, ignore_all_policy());
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
 | |
|     double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
 | |
|     double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN
 | |
| 
 | |
| /*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call,
 | |
| placing the results in a container, often `std::vector`.
 | |
| For example, generate five `double` roots of J[sub v] for integral order 2.
 | |
| 
 | |
| showing the same results as column J[sub 2](x) in table 1 of
 | |
| [@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].
 | |
| 
 | |
| */
 | |
|     unsigned int n_roots = 5U;
 | |
|     std::vector<double> roots;
 | |
|     boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
 | |
|     std::copy(roots.begin(),
 | |
|               roots.end(),
 | |
|               std::ostream_iterator<double>(std::cout, "\n"));
 | |
| 
 | |
| /*`Or generate 50 decimal digit roots of J[sub v] for non-integral order `v = 71/19`.
 | |
| 
 | |
| We set the precision of the output stream and show trailing zeros to display a fixed 50 decimal digits.
 | |
| */
 | |
|     std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
 | |
|     std::cout << std::showpoint << std::endl; // Show trailing zeros.
 | |
| 
 | |
|     float_type x = float_type(71) / 19;
 | |
|     float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
 | |
|     std::cout << "x = " << x << ", r = " << r << std::endl;
 | |
| 
 | |
|     r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
 | |
|     std::cout << "x = " << x << ", r = " << r << std::endl;
 | |
| 
 | |
|     std::vector<float_type> zeros;
 | |
|     boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));
 | |
| 
 | |
|     std::cout << "cyl_bessel_j_zeros" << std::endl;
 | |
|     // Print the roots to the output stream.
 | |
|     std::copy(zeros.begin(), zeros.end(),
 | |
|               std::ostream_iterator<float_type>(std::cout, "\n"));
 | |
| 
 | |
| /*`The Neumann function zeros are evaluated very similarly:
 | |
| */
 | |
|     using boost::math::cyl_neumann_zero;
 | |
| 
 | |
|     double zn = cyl_neumann_zero(2., 1);
 | |
| 
 | |
|     std::cout << "cyl_neumann_zero(2., 1) = " << std::endl;
 | |
|     //double zn0 = zn;
 | |
|     //    std::cout << "zn0 = " << std::endl;
 | |
|     //    std::cout << zn0 << std::endl;
 | |
|     //
 | |
|     std::cout << zn << std::endl;
 | |
|     //  std::cout << cyl_neumann_zero(2., 1) << std::endl;
 | |
| 
 | |
|     std::vector<float> nzeros(3); // Space for 3 zeros.
 | |
|     cyl_neumann_zero<float>(2.F, 1, nzeros.size(), nzeros.begin());
 | |
| 
 | |
|     std::cout << "cyl_neumann_zero<float>(2.F, 1, " << std::endl;
 | |
|     // Print the zeros to the output stream.
 | |
|     std::copy(nzeros.begin(), nzeros.end(),
 | |
|               std::ostream_iterator<float>(std::cout, "\n"));
 | |
| 
 | |
|     std::cout << cyl_neumann_zero(static_cast<float_type>(220)/100, 1) << std::endl;
 | |
|     // 3.6154383428745996706772556069431792744372398748422
 | |
| 
 | |
| /*`Finally we show how the output iterator can be used to compute a sum of zeros.
 | |
| 
 | |
| (See [@http://dx.doi.org/10.1017/S2040618500034067 Ian N. Sneddon, Infinite Sums of Bessel Zeros],
 | |
| page 150 equation 40).
 | |
| */
 | |
| //] [/bessel_zero_example_2]
 | |
| 
 | |
|     {
 | |
| //[bessel_zero_example_iterator_2]
 | |
| /*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
 | |
| */
 | |
|     using boost::math::cyl_bessel_j_zero;
 | |
|     double nu = 1.;
 | |
|     double sum = 0;
 | |
|     output_summation_iterator<double> it(&sum);  // sum of 1/zeros^2
 | |
|     cyl_bessel_j_zero(nu, 1, 10000, it);
 | |
| 
 | |
|     double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
 | |
|     std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
 | |
|       << ", exact = " << s << std::endl;
 | |
|     // nu = 1.00000, sum = 0.124990, exact = 0.125000
 | |
| //] [/bessel_zero_example_iterator_2]
 | |
|     }
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
| //[bessel_zero_example_iterator_3]
 | |
| 
 | |
| /*`Examples below show effect of 'bad' arguments that throw a `domain_error` exception.
 | |
| */
 | |
|   try
 | |
|   { // Try a negative rank m.
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << std::endl;
 | |
|     float dodgy_root = boost::math::cyl_bessel_j_zero(-1.F, -1);
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << dodgy_root << std::endl;
 | |
|     // Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
 | |
|     // Order argument is -1, but must be >= 0 !
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Throw exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
| /*`[note The type shown is the type [*after promotion],
 | |
| using __precision_policy and __promotion_policy, from `float` to `double` in this case.]
 | |
| 
 | |
| In this example the promotion goes:
 | |
| 
 | |
| # Arguments are `float` and `int`.
 | |
| # Treat `int` "as if" it were a `double`, so arguments are `float` and `double`.
 | |
| # Common type is `double` - so that's the precision we want (and the type that will be returned).
 | |
| # Evaluate internally as `long double` for full `double` precision.
 | |
| 
 | |
| See full code for other examples that promote from `double` to `long double`.
 | |
| 
 | |
| */
 | |
| 
 | |
| //] [/bessel_zero_example_iterator_3]
 | |
|     try
 | |
|   { // order v = inf
 | |
|      std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << std::endl;
 | |
|      float infF = std::numeric_limits<float>::infinity();
 | |
|      float inf_root = boost::math::cyl_bessel_j_zero(infF, 1);
 | |
|       std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << inf_root << std::endl;
 | |
|      //  boost::math::cyl_bessel_j_zero(-1.F, -1) 
 | |
|      //Thrown exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
 | |
|      // Requested the -1'th zero, but the rank must be positive !
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
|   try
 | |
|   { // order v = inf
 | |
|      double inf = std::numeric_limits<double>::infinity();
 | |
|      double inf_root = boost::math::cyl_bessel_j_zero(inf, 1);
 | |
|      std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl;
 | |
|      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
 | |
|      // Order argument is 1.#INF, but must be finite >= 0 !
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|   try
 | |
|   { // order v = NaN
 | |
|      double nan = std::numeric_limits<double>::quiet_NaN();
 | |
|      double nan_root = boost::math::cyl_bessel_j_zero(nan, 1);
 | |
|      std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl;
 | |
|      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
 | |
|      // Order argument is 1.#QNAN, but must be finite >= 0 !
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|   try
 | |
|   {   // Try a negative m.
 | |
|     double dodgy_root = boost::math::cyl_bessel_j_zero(0.0, -1);
 | |
|     //  warning C4146: unary minus operator applied to unsigned type, result still unsigned.
 | |
|     std::cout << "boost::math::cyl_bessel_j_zero(0.0, -1) " << dodgy_root << std::endl;
 | |
|     //  boost::math::cyl_bessel_j_zero(0.0, -1) 6.74652e+009
 | |
|     // This *should* fail because m is unreasonably large.
 | |
| 
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|   try
 | |
|   { // m = inf
 | |
|      double inf = std::numeric_limits<double>::infinity();
 | |
|      double inf_root = boost::math::cyl_bessel_j_zero(0.0, inf);
 | |
|      // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
 | |
|      std::cout << "boost::math::cyl_bessel_j_zero(0.0, inf) " << inf_root << std::endl;
 | |
|      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
 | |
|      // Requested the 0'th zero, but must be > 0 !
 | |
| 
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|   try
 | |
|   { // m = NaN
 | |
|      std::cout << "boost::math::cyl_bessel_j_zero(0.0, nan) " << std::endl ;
 | |
|      double nan = std::numeric_limits<double>::quiet_NaN();
 | |
|      double nan_root = boost::math::cyl_bessel_j_zero(0.0, nan);
 | |
|      // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
 | |
|      std::cout << nan_root << std::endl;
 | |
|      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
 | |
|      // Requested the 0'th zero, but must be > 0 !
 | |
|   }
 | |
|   catch (std::exception& ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|  } // int main()
 | |
| 
 | |
| /*
 | |
| Mathematica: Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}]
 | |
| 
 | |
| 7.2731751938316489503185694262290765588963196701623
 | |
| 10.724858308883141732536172745851416647110749599085
 | |
| 14.018504599452388106120459558042660282427471931581
 | |
| 17.25249845917041718216248716654977734919590383861
 | |
| 20.456678874044517595180234083894285885460502077814
 | |
| 23.64363089714234522494551422714731959985405172504
 | |
| 26.819671140255087745421311470965019261522390519297
 | |
| 29.988343117423674742679141796661432043878868194142
 | |
| 33.151796897690520871250862469973445265444791966114
 | |
| 36.3114160002162074157243540350393860813165201842
 | |
| 39.468132467505236587945197808083337887765967032029
 | |
| 42.622597801391236474855034831297954018844433480227
 | |
| 45.775281464536847753390206207806726581495950012439
 | |
| 48.926530489173566198367766817478553992471739894799
 | |
| 52.076607045343002794279746041878924876873478063472
 | |
| 55.225712944912571393594224327817265689059002890192
 | |
| 58.374006101538886436775188150439025201735151418932
 | |
| 61.521611873000965273726742659353136266390944103571
 | |
| 64.66863105379093036834648221487366079456596628716
 | |
| 67.815145619696290925556791375555951165111460585458
 | |
| 
 | |
| Mathematica: Table[N[BesselKZero[2, n], 50], {n, 1, 5, 1}]
 | |
| n |
 | |
| 1 | 3.3842417671495934727014260185379031127323883259329
 | |
| 2 | 6.7938075132682675382911671098369487124493222183854
 | |
| 3 | 10.023477979360037978505391792081418280789658279097
 | |
| 
 | |
| 
 | |
| */
 | |
| 
 | |
|  /*
 | |
| [bessel_zero_output]
 | |
| 
 | |
|   boost::math::cyl_bessel_j_zero(0.0, 1) 2.40483
 | |
|   boost::math::cyl_bessel_j_zero(0.0, 1) 2.40482555769577
 | |
|   boost::math::cyl_bessel_j_zero(-1.0, 1) 1.#QNAN
 | |
|   boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN
 | |
|   boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN
 | |
|   5.13562230184068
 | |
|   8.41724414039986
 | |
|   11.6198411721491
 | |
|   14.7959517823513
 | |
|   17.9598194949878
 | |
| 
 | |
|   x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623
 | |
|   x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458
 | |
|   7.2731751938316489503185694262290765588963196701623
 | |
|   10.724858308883141732536172745851416647110749599085
 | |
|   14.018504599452388106120459558042660282427471931581
 | |
|   cyl_neumann_zero(2., 1) = 3.3842417671495935000000000000000000000000000000000
 | |
|   3.3842418193817139000000000000000000000000000000000
 | |
|   6.7938075065612793000000000000000000000000000000000
 | |
|   10.023477554321289000000000000000000000000000000000
 | |
|   3.6154383428745996706772556069431792744372398748422
 | |
|   nu = 1.00000, sum = 0.124990, exact = 0.125000
 | |
|   Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Order argument is -1, but must be >= 0 !
 | |
|   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#INF, but must be finite >= 0 !
 | |
|   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#QNAN, but must be finite >= 0 !
 | |
|   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -1'th zero, but must be > 0 !
 | |
|   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
 | |
|   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
 | |
| 
 | |
| 
 | |
| ] [/bessel_zero_output]
 | |
| */
 | |
| 
 |