WSJT-X/Transceiver/HamlibTransceiver.cpp
Bill Somerville f972fc18e1
Remove direct struct access from usage of the Hamlib API
Preparation for safe dynamic linking to Hamlib where minor Hamlib
upgrades can be deployed just by replacing the DLL/SO.
2021-02-02 22:45:45 +00:00

1208 lines
44 KiB
C++

#include "HamlibTransceiver.hpp"
#include <cstring>
#include <cmath>
#include <tuple>
#include <QByteArray>
#include <QString>
#include <QStandardPaths>
#include <QFile>
#include <QJsonDocument>
#include <QJsonObject>
#include <QJsonValue>
#include <QDebug>
#include <hamlib/rig.h>
#include "pimpl_impl.hpp"
#include "moc_HamlibTransceiver.cpp"
#if HAVE_HAMLIB_OLD_CACHING
#define HAMLIB_CACHE_ALL CACHE_ALL
#endif
namespace
{
// Unfortunately bandwidth is conflated with mode, this is probably
// because Icom do the same. So we have to care about bandwidth if
// we want to set mode otherwise we will end up setting unwanted
// bandwidths every time we change mode. The best we can do via the
// Hamlib API is to request the normal option for the mode and hope
// that an appropriate filter is selected. Also ensure that mode is
// only set is absolutely necessary. On Icoms (and probably others)
// the filter is selected by number without checking the actual BW
// so unless the "normal" defaults are set on the rig we won't get
// desirable results.
//
// As an ultimate workaround make sure the user always has the
// option to skip mode setting altogether.
// callback function that receives transceiver capabilities from the
// hamlib libraries
int register_callback (rig_model_t rig_model, void * callback_data)
{
TransceiverFactory::Transceivers * rigs = reinterpret_cast<TransceiverFactory::Transceivers *> (callback_data);
// We can't use this one because it is only for testing Hamlib and
// would confuse users, possibly causing operating on the wrong
// frequency!
#ifdef RIG_MODEL_DUMMY_NOVFO
if (RIG_MODEL_DUMMY_NOVFO == rig_model)
{
return 1;
}
#endif
QString key;
if (RIG_MODEL_DUMMY == rig_model)
{
key = TransceiverFactory::basic_transceiver_name_;
}
else
{
key = QString::fromLatin1 (rig_get_caps_cptr (rig_model, RIG_CAPS_MFG_NAME_CPTR)).trimmed ()
+ ' '+ QString::fromLatin1 (rig_get_caps_cptr (rig_model, RIG_CAPS_MODEL_NAME_CPTR)).trimmed ()
// + ' '+ QString::fromLatin1 (rig_get_caps_cptr (rig_model, RIG_CAPS_VERSION)).trimmed ()
// + " (" + QString::fromLatin1 (rig_get_caps_cptr (rig_model, RIG_CAPS_STATUS)).trimmed () + ')'
;
}
auto port_type = TransceiverFactory::Capabilities::none;
switch(rig_get_caps_int (rig_model, RIG_CAPS_PORT_TYPE))
{
case RIG_PORT_SERIAL:
port_type = TransceiverFactory::Capabilities::serial;
break;
case RIG_PORT_NETWORK:
port_type = TransceiverFactory::Capabilities::network;
break;
case RIG_PORT_USB:
port_type = TransceiverFactory::Capabilities::usb;
break;
default: break;
}
auto ptt_type = rig_get_caps_int (rig_model, RIG_CAPS_PTT_TYPE);
(*rigs)[key] = TransceiverFactory::Capabilities (rig_model
, port_type
, RIG_MODEL_DUMMY != rig_model
&& (RIG_PTT_RIG == ptt_type
|| RIG_PTT_RIG_MICDATA == ptt_type)
, RIG_PTT_RIG_MICDATA == ptt_type);
return 1; // keep them coming
}
int unregister_callback (rig_model_t rig_model, void *)
{
rig_unregister (rig_get_caps_int (rig_model, RIG_CAPS_RIG_MODEL));
return 1; // keep them coming
}
// int frequency_change_callback (RIG * /* rig */, vfo_t vfo, freq_t f, rig_ptr_t arg)
// {
// (void)vfo; // unused in release build
// Q_ASSERT (vfo == RIG_VFO_CURR); // G4WJS: at the time of writing only current VFO is signalled by hamlib
// HamlibTransceiver * transceiver (reinterpret_cast<HamlibTransceiver *> (arg));
// Q_EMIT transceiver->frequency_change (f, Transceiver::A);
// return RIG_OK;
// }
class hamlib_tx_vfo_fixup final
{
public:
hamlib_tx_vfo_fixup (RIG * rig, vfo_t tx_vfo)
: rig_ {rig}
{
original_vfo_ = rig_->state.tx_vfo;
rig_->state.tx_vfo = tx_vfo;
}
~hamlib_tx_vfo_fixup ()
{
rig_->state.tx_vfo = original_vfo_;
}
private:
RIG * rig_;
vfo_t original_vfo_;
};
}
class HamlibTransceiver::impl final
{
public:
impl (HamlibTransceiver::logger_type * logger)
: logger_ {logger}
, model_ {RIG_MODEL_DUMMY}
, rig_ {rig_init (model_)}
, ptt_only_ {true}
, back_ptt_port_ {false}
, one_VFO_ {false}
, is_dummy_ {true}
, reversed_ {false}
, freq_query_works_ {true}
, mode_query_works_ {true}
, split_query_works_ {true}
, tickle_hamlib_ {false}
, get_vfo_works_ {true}
, set_vfo_works_ {true}
{
}
impl (HamlibTransceiver::logger_type * logger, unsigned model_number
, TransceiverFactory::ParameterPack const& params)
: logger_ {logger}
, model_ {model_number}
, rig_ {rig_init (model_)}
, ptt_only_ {false}
, back_ptt_port_ {TransceiverFactory::TX_audio_source_rear == params.audio_source}
, one_VFO_ {false}
, is_dummy_ {RIG_MODEL_DUMMY == model_}
, reversed_ {false}
, freq_query_works_ {rig_ && rig_get_function_ptr (model_, RIG_FUNCTION_GET_FREQ)}
, mode_query_works_ {rig_ && rig_get_function_ptr (model_, RIG_FUNCTION_GET_MODE)}
, split_query_works_ {rig_ && rig_get_function_ptr (model_, RIG_FUNCTION_GET_SPLIT_VFO)}
, tickle_hamlib_ {false}
, get_vfo_works_ {true}
, set_vfo_works_ {true}
{
}
HamlibTransceiver::logger_type& logger () const
{
return *logger_;
}
void error_check (int ret_code, QString const& doing) const;
void set_conf (char const * item, char const * value);
QByteArray get_conf (char const * item);
Transceiver::MODE map_mode (rmode_t) const;
rmode_t map_mode (Transceiver::MODE mode) const;
std::tuple<vfo_t, vfo_t> get_vfos (bool for_split) const;
HamlibTransceiver::logger_type mutable * logger_;
unsigned model_;
struct RIGDeleter {static void cleanup (RIG *);};
QScopedPointer<RIG, RIGDeleter> rig_;
bool ptt_only_; // we can use a dummy device for PTT
bool back_ptt_port_;
bool one_VFO_;
bool is_dummy_;
// these are saved on destruction so we can start new instances
// where the last one left off
static freq_t dummy_frequency_;
static rmode_t dummy_mode_;
bool mutable reversed_;
bool freq_query_works_;
bool mode_query_works_;
bool split_query_works_;
bool tickle_hamlib_; // Hamlib requires a
// rig_set_split_vfo() call to
// establish the Tx VFO
bool get_vfo_works_; // Net rigctl promises what it can't deliver
bool set_vfo_works_; // More rigctl promises which it can't deliver
static int debug_callback (enum rig_debug_level_e level, rig_ptr_t arg, char const * format, va_list ap);
};
freq_t HamlibTransceiver::impl::dummy_frequency_;
rmode_t HamlibTransceiver::impl::dummy_mode_ {RIG_MODE_NONE};
// reroute Hamlib diagnostic messages to Qt
int HamlibTransceiver::impl::debug_callback (enum rig_debug_level_e level, rig_ptr_t arg, char const * format, va_list ap)
{
auto logger = reinterpret_cast<logger_type *> (arg);
auto message = QString::vasprintf (format, ap);
va_end (ap);
auto severity = boost::log::trivial::trace;
switch (level)
{
case RIG_DEBUG_BUG: severity = boost::log::trivial::fatal; break;
case RIG_DEBUG_ERR: severity = boost::log::trivial::error; break;
case RIG_DEBUG_WARN: severity = boost::log::trivial::warning; break;
case RIG_DEBUG_VERBOSE: severity = boost::log::trivial::debug; break;
case RIG_DEBUG_TRACE: severity = boost::log::trivial::trace; break;
default: break;
};
if (level != RIG_DEBUG_NONE) // no idea what level NONE means so
// ignore it
{
BOOST_LOG_SEV (*logger, severity) << message.trimmed ().toStdString ();
}
return 0;
}
void HamlibTransceiver::register_transceivers (logger_type * logger,
TransceiverFactory::Transceivers * registry)
{
rig_set_debug_callback (impl::debug_callback, logger);
rig_set_debug (RIG_DEBUG_TRACE);
BOOST_LOG_SEV (*logger, boost::log::trivial::info) << "Hamlib version: " << rig_version ();
rig_load_all_backends ();
rig_list_foreach_model (register_callback, registry);
}
void HamlibTransceiver::unregister_transceivers ()
{
rig_list_foreach_model (unregister_callback, nullptr);
}
void HamlibTransceiver::impl::RIGDeleter::cleanup (RIG * rig)
{
if (rig)
{
rig_cleanup (rig);
}
}
void HamlibTransceiver::impl::error_check (int ret_code, QString const& doing) const
{
if (RIG_OK != ret_code)
{
CAT_ERROR ("error: " << rigerror (ret_code));
throw error {tr ("Hamlib error: %1 while %2").arg (rigerror (ret_code)).arg (doing)};
}
}
std::tuple<vfo_t, vfo_t> HamlibTransceiver::impl::get_vfos (bool for_split) const
{
if (get_vfo_works_ && rig_get_function_ptr (model_, RIG_FUNCTION_GET_VFO))
{
vfo_t v;
error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib
CAT_TRACE ("rig_get_vfo VFO=" << rig_strvfo (v));
reversed_ = RIG_VFO_B == v;
}
else if (!for_split && set_vfo_works_ && rig_get_function_ptr (model_, RIG_FUNCTION_SET_VFO) && rig_get_function_ptr (model_, RIG_FUNCTION_SET_SPLIT_VFO))
{
// use VFO A/MAIN for main frequency and B/SUB for Tx
// frequency if split since these type of radios can only
// support this way around
CAT_TRACE ("rig_set_vfo VFO=A/MAIN");
error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO"));
}
// else only toggle available but VFOs should be substitutable
auto rx_vfo = rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN;
auto tx_vfo = (WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_) && for_split
? (rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB)
: rx_vfo;
if (reversed_)
{
CAT_TRACE ("reversing VFOs");
std::swap (rx_vfo, tx_vfo);
}
CAT_TRACE ("RX VFO=" << rig_strvfo (rx_vfo) << " TX VFO=" << rig_strvfo (tx_vfo));
return std::make_tuple (rx_vfo, tx_vfo);
}
void HamlibTransceiver::impl::set_conf (char const * item, char const * value)
{
token_t token = rig_token_lookup (rig_.data (), item);
if (RIG_CONF_END != token) // only set if valid for rig model
{
error_check (rig_set_conf (rig_.data (), token, value), tr ("setting a configuration item"));
}
}
QByteArray HamlibTransceiver::impl::get_conf (char const * item)
{
token_t token = rig_token_lookup (rig_.data (), item);
QByteArray value {128, '\0'};
if (RIG_CONF_END != token) // only get if valid for rig model
{
error_check (rig_get_conf (rig_.data (), token, value.data ()), tr ("getting a configuration item"));
}
return value;
}
auto HamlibTransceiver::impl::map_mode (rmode_t m) const -> MODE
{
switch (m)
{
case RIG_MODE_AM:
case RIG_MODE_SAM:
case RIG_MODE_AMS:
case RIG_MODE_DSB:
return AM;
case RIG_MODE_CW:
return CW;
case RIG_MODE_CWR:
return CW_R;
case RIG_MODE_USB:
case RIG_MODE_ECSSUSB:
case RIG_MODE_SAH:
case RIG_MODE_FAX:
return USB;
case RIG_MODE_LSB:
case RIG_MODE_ECSSLSB:
case RIG_MODE_SAL:
return LSB;
case RIG_MODE_RTTY:
return FSK;
case RIG_MODE_RTTYR:
return FSK_R;
case RIG_MODE_PKTLSB:
return DIG_L;
case RIG_MODE_PKTUSB:
return DIG_U;
case RIG_MODE_FM:
case RIG_MODE_WFM:
return FM;
case RIG_MODE_PKTFM:
return DIG_FM;
default:
return UNK;
}
}
rmode_t HamlibTransceiver::impl::map_mode (MODE mode) const
{
switch (mode)
{
case AM: return RIG_MODE_AM;
case CW: return RIG_MODE_CW;
case CW_R: return RIG_MODE_CWR;
case USB: return RIG_MODE_USB;
case LSB: return RIG_MODE_LSB;
case FSK: return RIG_MODE_RTTY;
case FSK_R: return RIG_MODE_RTTYR;
case DIG_L: return RIG_MODE_PKTLSB;
case DIG_U: return RIG_MODE_PKTUSB;
case FM: return RIG_MODE_FM;
case DIG_FM: return RIG_MODE_PKTFM;
default: break;
}
return RIG_MODE_USB; // quieten compiler grumble
}
HamlibTransceiver::HamlibTransceiver (logger_type * logger,
TransceiverFactory::PTTMethod ptt_type, QString const& ptt_port,
QObject * parent)
: PollingTransceiver {logger, 0, parent}
, m_ {logger}
{
if (!m_->rig_)
{
throw error {tr ("Hamlib initialisation error")};
}
switch (ptt_type)
{
case TransceiverFactory::PTT_method_VOX:
m_->set_conf ("ptt_type", "None");
break;
case TransceiverFactory::PTT_method_CAT:
// Use the default PTT_TYPE for the rig (defined in the Hamlib
// rig back-end capabilities).
break;
case TransceiverFactory::PTT_method_DTR:
case TransceiverFactory::PTT_method_RTS:
if (!ptt_port.isEmpty ())
{
#if defined (WIN32)
m_->set_conf ("ptt_pathname", ("\\\\.\\" + ptt_port).toLatin1 ().data ());
#else
m_->set_conf ("ptt_pathname", ptt_port.toLatin1 ().data ());
#endif
}
if (TransceiverFactory::PTT_method_DTR == ptt_type)
{
m_->set_conf ("ptt_type", "DTR");
}
else
{
m_->set_conf ("ptt_type", "RTS");
}
}
}
HamlibTransceiver::HamlibTransceiver (logger_type * logger,
unsigned model_number,
TransceiverFactory::ParameterPack const& params,
QObject * parent)
: PollingTransceiver {logger, params.poll_interval, parent}
, m_ {logger, model_number, params}
{
if (!m_->rig_)
{
throw error {tr ("Hamlib initialisation error")};
}
// m_->rig_->state.obj = this;
//
// user defined Hamlib settings
//
auto settings_file_name = QStandardPaths::locate (QStandardPaths::AppConfigLocation
, "hamlib_settings.json");
if (!settings_file_name.isEmpty ())
{
QFile settings_file {settings_file_name};
qDebug () << "Using Hamlib settings file:" << settings_file_name;
if (settings_file.open (QFile::ReadOnly))
{
QJsonParseError status;
auto settings_doc = QJsonDocument::fromJson (settings_file.readAll (), &status);
if (status.error)
{
throw error {tr ("Hamlib settings file error: %1 at character offset %2")
.arg (status.errorString ()).arg (status.offset)};
}
qDebug () << "Hamlib settings JSON:" << settings_doc.toJson ();
if (!settings_doc.isObject ())
{
throw error {tr ("Hamlib settings file error: top level must be a JSON object")};
}
auto const& settings = settings_doc.object ();
//
// configuration settings
//
auto const& config = settings["config"];
if (!config.isUndefined ())
{
if (!config.isObject ())
{
throw error {tr ("Hamlib settings file error: config must be a JSON object")};
}
auto const& config_list = config.toObject ();
for (auto item = config_list.constBegin (); item != config_list.constEnd (); ++item)
{
m_->set_conf (item.key ().toLocal8Bit ().constData ()
, (*item).toVariant ().toString ().toLocal8Bit ().constData ());
}
}
}
}
if (!m_->is_dummy_)
{
switch (rig_get_caps_int (m_->model_, RIG_CAPS_PORT_TYPE))
{
case RIG_PORT_SERIAL:
if (!params.serial_port.isEmpty ())
{
m_->set_conf ("rig_pathname", params.serial_port.toLatin1 ().data ());
}
m_->set_conf ("serial_speed", QByteArray::number (params.baud).data ());
if (params.data_bits != TransceiverFactory::default_data_bits)
{
m_->set_conf ("data_bits", TransceiverFactory::seven_data_bits == params.data_bits ? "7" : "8");
}
if (params.stop_bits != TransceiverFactory::default_stop_bits)
{
m_->set_conf ("stop_bits", TransceiverFactory::one_stop_bit == params.stop_bits ? "1" : "2");
}
switch (params.handshake)
{
case TransceiverFactory::handshake_none: m_->set_conf ("serial_handshake", "None"); break;
case TransceiverFactory::handshake_XonXoff: m_->set_conf ("serial_handshake", "XONXOFF"); break;
case TransceiverFactory::handshake_hardware: m_->set_conf ("serial_handshake", "Hardware"); break;
default: break;
}
if (params.force_dtr)
{
m_->set_conf ("dtr_state", params.dtr_high ? "ON" : "OFF");
}
if (params.force_rts)
{
if (TransceiverFactory::handshake_hardware != params.handshake)
{
m_->set_conf ("rts_state", params.rts_high ? "ON" : "OFF");
}
}
break;
case RIG_PORT_NETWORK:
if (!params.network_port.isEmpty ())
{
m_->set_conf ("rig_pathname", params.network_port.toLatin1 ().data ());
}
break;
case RIG_PORT_USB:
if (!params.usb_port.isEmpty ())
{
m_->set_conf ("rig_pathname", params.usb_port.toLatin1 ().data ());
}
break;
default:
throw error {tr ("Unsupported CAT type")};
break;
}
}
switch (params.ptt_type)
{
case TransceiverFactory::PTT_method_VOX:
m_->set_conf ("ptt_type", "None");
break;
case TransceiverFactory::PTT_method_CAT:
// Use the default PTT_TYPE for the rig (defined in the Hamlib
// rig back-end capabilities).
break;
case TransceiverFactory::PTT_method_DTR:
case TransceiverFactory::PTT_method_RTS:
if (params.ptt_port.size ()
&& params.ptt_port != "None"
&& (m_->is_dummy_
|| RIG_PORT_SERIAL != rig_get_caps_int (m_->model_, RIG_CAPS_PORT_TYPE)
|| params.ptt_port != params.serial_port))
{
#if defined (WIN32)
m_->set_conf ("ptt_pathname", ("\\\\.\\" + params.ptt_port).toLatin1 ().data ());
#else
m_->set_conf ("ptt_pathname", params.ptt_port.toLatin1 ().data ());
#endif
}
if (TransceiverFactory::PTT_method_DTR == params.ptt_type)
{
m_->set_conf ("ptt_type", "DTR");
}
else
{
m_->set_conf ("ptt_type", "RTS");
}
}
// Make Icom CAT split commands less glitchy
m_->set_conf ("no_xchg", "1");
// would be nice to get events but not supported on Windows and also not on a lot of rigs
// rig_set_freq_callback (m_->rig_.data (), &frequency_change_callback, this);
}
HamlibTransceiver::~HamlibTransceiver () = default;
int HamlibTransceiver::do_start ()
{
CAT_TRACE ("starting: " << rig_get_caps_cptr (m_->model_, RIG_CAPS_MFG_NAME_CPTR)
<< ": " << rig_get_caps_cptr (m_->model_, RIG_CAPS_MODEL_NAME_CPTR));
m_->error_check (rig_open (m_->rig_.data ()), tr ("opening connection to rig"));
// reset dynamic state
m_->one_VFO_ = false;
m_->reversed_ = false;
m_->freq_query_works_ = rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_FREQ);
m_->mode_query_works_ = rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_MODE);
m_->split_query_works_ = rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_SPLIT_VFO);
m_->tickle_hamlib_ = false;
m_->get_vfo_works_ = true;
m_->set_vfo_works_ = true;
// the Net rigctl back end promises all functions work but we must
// test get_vfo as it determines our strategy for Icom rigs
vfo_t vfo;
int rc = rig_get_vfo (m_->rig_.data (), &vfo);
if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
{
m_->get_vfo_works_ = false;
// determine if the rig uses single VFO addressing i.e. A/B and
// no get_vfo function
if (m_->rig_->state.vfo_list & RIG_VFO_B)
{
m_->one_VFO_ = true;
}
}
else
{
m_->error_check (rc, "testing getting current VFO");
}
if ((WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_)
&& rig_get_function_ptr (m_->model_, RIG_FUNCTION_SET_SPLIT_VFO)) // if split is possible do some extra setup
{
freq_t f1;
freq_t f2;
rmode_t m {RIG_MODE_USB};
rmode_t mb;
pbwidth_t w {RIG_PASSBAND_NORMAL};
pbwidth_t wb;
if (m_->freq_query_works_
&& (!m_->get_vfo_works_ || !rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_VFO)))
{
// Icom have deficient CAT protocol with no way of reading which
// VFO is selected or if SPLIT is selected so we have to simply
// assume it is as when we started by setting at open time right
// here. We also gather/set other initial state.
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &f1), tr ("getting current frequency"));
f1 = std::round (f1);
CAT_TRACE ("current frequency=" << f1);
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting current mode"));
CAT_TRACE ("current mode=" << rig_strrmode (m) << " bw=" << w);
if (!rig_get_function_ptr (m_->model_, RIG_FUNCTION_SET_VFO))
{
CAT_TRACE ("rig_vfo_op TOGGLE");
rc = rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE);
}
else
{
CAT_TRACE ("rig_set_vfo to other VFO");
rc = rig_set_vfo (m_->rig_.data (), m_->rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB);
if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
{
// if we are talking to netrigctl then toggle VFO op
// may still work
CAT_TRACE ("rig_vfo_op TOGGLE");
rc = rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE);
}
}
if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
{
// we are probably dealing with rigctld so we do not
// have completely accurate rig capabilities
m_->set_vfo_works_ = false;
m_->one_VFO_ = false; // we do not need single VFO addressing
}
else
{
m_->error_check (rc, tr ("exchanging VFOs"));
}
if (m_->set_vfo_works_)
{
// without the above we cannot proceed but we know we
// are on VFO A and that will not change so there's no
// need to execute this block
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &f2), tr ("getting other VFO frequency"));
f2 = std::round (f2);
CAT_TRACE ("rig_get_freq other frequency=" << f2);
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &mb, &wb), tr ("getting other VFO mode"));
CAT_TRACE ("rig_get_mode other mode=" << rig_strrmode (mb) << " bw=" << wb);
update_other_frequency (f2);
if (!rig_get_function_ptr (m_->model_, RIG_FUNCTION_SET_VFO))
{
CAT_TRACE ("rig_vfo_op TOGGLE");
m_->error_check (rig_vfo_op (m_->rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE), tr ("exchanging VFOs"));
}
else
{
CAT_TRACE ("rig_set_vfo A/MAIN");
m_->error_check (rig_set_vfo (m_->rig_.data (), m_->rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO"));
}
if (f1 != f2 || m != mb || w != wb) // we must have started with MAIN/A
{
update_rx_frequency (f1);
}
else
{
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &f1), tr ("getting frequency"));
f1 = std::round (f1);
CAT_TRACE ("rig_get_freq frequency=" << f1);
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting mode"));
CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (m) << " bw=" << w);
update_rx_frequency (f1);
}
}
// TRACE_CAT ("rig_set_split_vfo split off");
// m_->error_check (rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, RIG_SPLIT_OFF, RIG_VFO_CURR), tr ("setting split off"));
// update_split (false);
}
else
{
vfo_t v {RIG_VFO_A}; // assume RX always on VFO A/MAIN
if (m_->get_vfo_works_ && rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_VFO))
{
m_->error_check (rig_get_vfo (m_->rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib
CAT_TRACE ("rig_get_vfo current VFO=" << rig_strvfo (v));
}
m_->reversed_ = RIG_VFO_B == v;
if (m_->mode_query_works_ && !(rig_get_caps_int (m_->model_, RIG_CAPS_TARGETABLE_VFO) & (RIG_TARGETABLE_MODE | RIG_TARGETABLE_PURE)))
{
if (RIG_OK == rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, &w))
{
CAT_TRACE ("rig_get_mode current mode=" << rig_strrmode (m) << " bw=" << w);
}
else
{
m_->mode_query_works_ = false;
// Some rigs (HDSDR) don't have a working way of
// reporting MODE so we give up on mode queries -
// sets will still cause an error
CAT_TRACE ("rig_get_mode can't do on this rig");
}
}
}
update_mode (m_->map_mode (m));
}
m_->tickle_hamlib_ = true;
if (m_->is_dummy_ && !m_->ptt_only_ && impl::dummy_frequency_)
{
// return to where last dummy instance was
// TODO: this is going to break down if multiple dummy rigs are used
rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, impl::dummy_frequency_);
update_rx_frequency (impl::dummy_frequency_);
if (RIG_MODE_NONE != impl::dummy_mode_)
{
rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, impl::dummy_mode_, RIG_PASSBAND_NOCHANGE);
update_mode (m_->map_mode (impl::dummy_mode_));
}
}
#if HAVE_HAMLIB_CACHING || HAVE_HAMLIB_OLD_CACHING
// we must disable Hamlib caching because it lies about frequency
// for less than 1 Hz resolution rigs
auto orig_cache_timeout = rig_get_cache_timeout_ms (m_->rig_.data (), HAMLIB_CACHE_ALL);
rig_set_cache_timeout_ms (m_->rig_.data (), HAMLIB_CACHE_ALL, 0);
#endif
int resolution {0};
if (m_->freq_query_works_)
{
freq_t current_frequency;
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &current_frequency), tr ("getting current VFO frequency"));
current_frequency = std::round (current_frequency);
Frequency f = current_frequency;
if (f && !(f % 10))
{
auto test_frequency = f - f % 100 + 55;
m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, test_frequency), tr ("setting frequency"));
freq_t new_frequency;
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &new_frequency), tr ("getting current VFO frequency"));
new_frequency = std::round (new_frequency);
switch (static_cast<Radio::FrequencyDelta> (new_frequency - test_frequency))
{
case -5: resolution = -1; break; // 10Hz truncated
case 5: resolution = 1; break; // 10Hz rounded
case -15: resolution = -2; break; // 20Hz truncated
case -55: resolution = -3; break; // 100Hz truncated
case 45: resolution = 3; break; // 100Hz rounded
}
if (1 == resolution) // may be 20Hz rounded
{
test_frequency = f - f % 100 + 51;
m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, test_frequency), tr ("setting frequency"));
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &new_frequency), tr ("getting current VFO frequency"));
if (9 == static_cast<Radio::FrequencyDelta> (new_frequency - test_frequency))
{
resolution = 2; // 20Hz rounded
}
}
m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, current_frequency), tr ("setting frequency"));
}
}
else
{
resolution = -1; // best guess
}
#if HAVE_HAMLIB_CACHING || HAVE_HAMLIB_OLD_CACHING
// revert Hamlib cache timeout
rig_set_cache_timeout_ms (m_->rig_.data (), HAMLIB_CACHE_ALL, orig_cache_timeout);
#endif
do_poll ();
CAT_TRACE ("finished start " << state () << " reversed=" << m_->reversed_ << " resolution=" << resolution);
return resolution;
}
void HamlibTransceiver::do_stop ()
{
if (m_->is_dummy_ && !m_->ptt_only_)
{
rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &impl::dummy_frequency_);
impl::dummy_frequency_ = std::round (impl::dummy_frequency_);
if (m_->mode_query_works_)
{
pbwidth_t width;
rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &impl::dummy_mode_, &width);
}
}
if (m_->rig_)
{
rig_close (m_->rig_.data ());
}
CAT_TRACE ("state: " << state () << " reversed=" << m_->reversed_);
}
void HamlibTransceiver::do_frequency (Frequency f, MODE m, bool no_ignore)
{
CAT_TRACE ("f: " << f << " mode: " << m << " reversed: " << m_->reversed_);
// only change when receiving or simplex or direct VFO addressing
// unavailable or forced
if (!state ().ptt () || !state ().split () || !m_->one_VFO_ || no_ignore)
{
// for the 1st time as a band change may cause a recalled mode to be
// set
m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, f), tr ("setting frequency"));
update_rx_frequency (f);
if (m_->mode_query_works_ && UNK != m)
{
rmode_t current_mode;
pbwidth_t current_width;
auto new_mode = m_->map_mode (m);
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " bw=" << current_width);
if (new_mode != current_mode)
{
CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
m_->error_check (rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
// for the 2nd time because a mode change may have caused a
// frequency change
m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, f), tr ("setting frequency"));
// for the second time because some rigs change mode according
// to frequency such as the TS-2000 auto mode setting
CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
m_->error_check (rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
}
update_mode (m);
}
}
}
void HamlibTransceiver::do_tx_frequency (Frequency tx, MODE mode, bool no_ignore)
{
CAT_TRACE ("txf: " << tx << " reversed: " << m_->reversed_);
if (WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_) // split is meaningless if you can't see it
{
auto split = tx ? RIG_SPLIT_ON : RIG_SPLIT_OFF;
auto vfos = m_->get_vfos (tx);
// auto rx_vfo = std::get<0> (vfos); // or use RIG_VFO_CURR
auto tx_vfo = std::get<1> (vfos);
if (tx)
{
// Doing set split for the 1st of two times, this one
// ensures that the internal Hamlib state is correct
// otherwise rig_set_split_freq() will target the wrong VFO
// on some rigs
if (m_->tickle_hamlib_)
{
// This potentially causes issues with the Elecraft K3
// which will block setting split mode when it deems
// cross mode split operation not possible. There's not
// much we can do since the Hamlib Library needs this
// call at least once to establish the Tx VFO. Best we
// can do is only do this once per session.
CAT_TRACE ("rig_set_split_vfo split=" << split);
auto rc = rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, split, tx_vfo);
if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc))
{
// On rigs that can't have split controlled only throw an
// exception when an error other than command not accepted
// is returned when trying to leave split mode. This allows
// fake split mode and non-split mode to work without error
// on such rigs without having to know anything about the
// specific rig.
m_->error_check (rc, tr ("setting/unsetting split mode"));
}
m_->tickle_hamlib_ = false;
update_split (tx);
}
// just change current when transmitting with single VFO
// addressing
if (state ().ptt () && m_->one_VFO_)
{
CAT_TRACE ("rig_set_split_vfo split=" << split);
m_->error_check (rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, split, tx_vfo), tr ("setting split mode"));
m_->error_check (rig_set_freq (m_->rig_.data (), RIG_VFO_CURR, tx), tr ("setting frequency"));
if (UNK != mode && m_->mode_query_works_)
{
rmode_t current_mode;
pbwidth_t current_width;
auto new_mode = m_->map_mode (mode);
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " bw=" << current_width);
if (new_mode != current_mode)
{
CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
m_->error_check (rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
}
}
update_other_frequency (tx);
}
else if (!m_->one_VFO_ || no_ignore) // if not single VFO addressing and not forced
{
hamlib_tx_vfo_fixup fixup (m_->rig_.data (), tx_vfo);
if (UNK != mode)
{
auto new_mode = m_->map_mode (mode);
CAT_TRACE ("rig_set_split_freq_mode freq=" << tx
<< " mode = " << rig_strrmode (new_mode));
m_->error_check (rig_set_split_freq_mode (m_->rig_.data (), RIG_VFO_CURR, tx, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting split TX frequency and mode"));
}
else
{
CAT_TRACE ("rig_set_split_freq freq=" << tx);
m_->error_check (rig_set_split_freq (m_->rig_.data (), RIG_VFO_CURR, tx), tr ("setting split TX frequency"));
}
// Enable split last since some rigs (Kenwood for one) come out
// of split when you switch RX VFO (to set split mode above for
// example). Also the Elecraft K3 will refuse to go to split
// with certain VFO A/B mode combinations.
CAT_TRACE ("rig_set_split_vfo split=" << split);
m_->error_check (rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, split, tx_vfo), tr ("setting split mode"));
update_other_frequency (tx);
update_split (tx);
}
}
else
{
// Disable split
CAT_TRACE ("rig_set_split_vfo split=" << split);
auto rc = rig_set_split_vfo (m_->rig_.data (), RIG_VFO_CURR, split, tx_vfo);
if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc))
{
// On rigs that can't have split controlled only throw an
// exception when an error other than command not accepted
// is returned when trying to leave split mode. This allows
// fake split mode and non-split mode to work without error
// on such rigs without having to know anything about the
// specific rig.
m_->error_check (rc, tr ("setting/unsetting split mode"));
}
update_other_frequency (tx);
update_split (tx);
}
}
}
void HamlibTransceiver::do_mode (MODE mode)
{
CAT_TRACE (mode);
auto vfos = m_->get_vfos (state ().split ());
// auto rx_vfo = std::get<0> (vfos);
auto tx_vfo = std::get<1> (vfos);
rmode_t current_mode;
pbwidth_t current_width;
auto new_mode = m_->map_mode (mode);
// only change when receiving or simplex if direct VFO addressing unavailable
if (!(state ().ptt () && state ().split () && m_->one_VFO_))
{
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " bw=" << current_width);
if (new_mode != current_mode)
{
CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
m_->error_check (rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
}
}
// just change current when transmitting split with one VFO mode
if (state ().ptt () && state ().split () && m_->one_VFO_)
{
m_->error_check (rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (current_mode) << " bw=" << current_width);
if (new_mode != current_mode)
{
CAT_TRACE ("rig_set_mode mode=" << rig_strrmode (new_mode));
m_->error_check (rig_set_mode (m_->rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
}
}
else if (state ().split () && !m_->one_VFO_)
{
m_->error_check (rig_get_split_mode (m_->rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting split TX VFO mode"));
CAT_TRACE ("rig_get_split_mode mode=" << rig_strrmode (current_mode) << " bw=" << current_width);
if (new_mode != current_mode)
{
CAT_TRACE ("rig_set_split_mode mode=" << rig_strrmode (new_mode));
hamlib_tx_vfo_fixup fixup (m_->rig_.data (), tx_vfo);
m_->error_check (rig_set_split_mode (m_->rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting split TX VFO mode"));
}
}
update_mode (mode);
}
void HamlibTransceiver::do_poll ()
{
freq_t f;
rmode_t m;
pbwidth_t w;
split_t s;
if (m_->get_vfo_works_ && rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_VFO))
{
vfo_t v;
m_->error_check (rig_get_vfo (m_->rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib
CAT_TRACE ("VFO=" << rig_strvfo (v));
m_->reversed_ = RIG_VFO_B == v;
}
if ((WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_)
&& rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_SPLIT_VFO) && m_->split_query_works_)
{
vfo_t v {RIG_VFO_NONE}; // so we can tell if it doesn't get updated :(
auto rc = rig_get_split_vfo (m_->rig_.data (), RIG_VFO_CURR, &s, &v);
if (-RIG_OK == rc && RIG_SPLIT_ON == s)
{
CAT_TRACE ("rig_get_split_vfo split=" << s << " VFO=" << rig_strvfo (v));
update_split (true);
// if (RIG_VFO_A == v)
// {
// m_->reversed_ = true; // not sure if this helps us here
// }
}
else if (-RIG_OK == rc) // not split
{
CAT_TRACE ("rig_get_split_vfo split=" << s << " VFO=" << rig_strvfo (v));
update_split (false);
}
else
{
// Some rigs (Icom) don't have a way of reporting SPLIT
// mode
CAT_TRACE ("rig_get_split_vfo can't do on this rig");
// just report how we see it based on prior commands
m_->split_query_works_ = false;
}
}
if (m_->freq_query_works_)
{
// only read if possible and when receiving or simplex
if (!state ().ptt () || !state ().split ())
{
m_->error_check (rig_get_freq (m_->rig_.data (), RIG_VFO_CURR, &f), tr ("getting current VFO frequency"));
f = std::round (f);
CAT_TRACE ("rig_get_freq frequency=" << f);
update_rx_frequency (f);
}
if ((WSJT_RIG_NONE_CAN_SPLIT || !m_->is_dummy_)
&& state ().split ()
&& (rig_get_caps_int (m_->model_, RIG_CAPS_TARGETABLE_VFO) & (RIG_TARGETABLE_FREQ | RIG_TARGETABLE_PURE))
&& !m_->one_VFO_)
{
// only read "other" VFO if in split, this allows rigs like
// FlexRadio to work in Kenwood TS-2000 mode despite them
// not having a FB; command
// we can only probe current VFO unless rig supports reading
// the other one directly because we can't glitch the Rx
m_->error_check (rig_get_freq (m_->rig_.data ()
, m_->reversed_
? (m_->rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN)
: (m_->rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB)
, &f), tr ("getting other VFO frequency"));
f = std::round (f);
CAT_TRACE ("rig_get_freq other VFO=" << f);
update_other_frequency (f);
}
}
// only read when receiving or simplex if direct VFO addressing unavailable
if ((!state ().ptt () || !state ().split ())
&& m_->mode_query_works_)
{
// We have to ignore errors here because Yaesu FTdx... rigs can
// report the wrong mode when transmitting split with different
// modes per VFO. This is unfortunate because that is exactly
// what you need to do to get 4kHz Rx b.w and modulation into
// the rig through the data socket or USB. I.e. USB for Rx and
// DATA-USB for Tx.
auto rc = rig_get_mode (m_->rig_.data (), RIG_VFO_CURR, &m, &w);
if (RIG_OK == rc)
{
CAT_TRACE ("rig_get_mode mode=" << rig_strrmode (m) << " bw=" << w);
update_mode (m_->map_mode (m));
}
else
{
CAT_TRACE ("rig_get_mode mode failed with rc: " << rc << " ignoring");
}
}
if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt && rig_get_function_ptr (m_->model_, RIG_FUNCTION_GET_PTT))
{
ptt_t p;
auto rc = rig_get_ptt (m_->rig_.data (), RIG_VFO_CURR, &p);
if (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc) // may fail if
// Net rig ctl and target doesn't
// support command
{
m_->error_check (rc, tr ("getting PTT state"));
CAT_TRACE ("rig_get_ptt PTT=" << p);
update_PTT (!(RIG_PTT_OFF == p));
}
}
}
void HamlibTransceiver::do_ptt (bool on)
{
CAT_TRACE ("PTT: " << on << " " << state () << " reversed=" << m_->reversed_);
if (on)
{
if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt)
{
CAT_TRACE ("rig_set_ptt PTT=true");
auto ptt_type = rig_get_caps_int (m_->model_, RIG_CAPS_PTT_TYPE);
m_->error_check (rig_set_ptt (m_->rig_.data (), RIG_VFO_CURR
, RIG_PTT_RIG_MICDATA == ptt_type && m_->back_ptt_port_
? RIG_PTT_ON_DATA : RIG_PTT_ON), tr ("setting PTT on"));
}
}
else
{
if (RIG_PTT_NONE != m_->rig_->state.pttport.type.ptt)
{
CAT_TRACE ("rig_set_ptt PTT=false");
m_->error_check (rig_set_ptt (m_->rig_.data (), RIG_VFO_CURR, RIG_PTT_OFF), tr ("setting PTT off"));
}
}
update_PTT (on);
}