mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-08 18:16:02 -05:00
c43bfde2ed
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/map65@334 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
103 lines
2.9 KiB
Fortran
103 lines
2.9 KiB
Fortran
subroutine geodist(Eplat, Eplon, Stlat, Stlon,
|
|
+ Az, Baz, Dist)
|
|
implicit none
|
|
real eplat, eplon, stlat, stlon, az, baz, dist
|
|
|
|
C JHT: In actual fact, I use the first two arguments for "My Location",
|
|
C the second two for "His location"; West longitude is positive.
|
|
|
|
c
|
|
c
|
|
c Taken directly from:
|
|
c Thomas, P.D., 1970, Spheroidal geodesics, reference systems,
|
|
c & local geometry, U.S. Naval Oceanographic Office SP-138,
|
|
c 165 pp.
|
|
c
|
|
c assumes North Latitude and East Longitude are positive
|
|
c
|
|
c EpLat, EpLon = End point Lat/Long
|
|
c Stlat, Stlon = Start point lat/long
|
|
c Az, BAz = direct & reverse azimuith
|
|
c Dist = Dist (km); Deg = central angle, discarded
|
|
c
|
|
|
|
real BOA, F, P1R, P2R, L1R, L2R, DLR, T1R, T2R, TM,
|
|
+ DTM, STM, CTM, SDTM,CDTM, KL, KK, SDLMR, L,
|
|
+ CD, DL, SD, T, U, V, D, X, E, Y, A, FF64, TDLPM,
|
|
+ HAPBR, HAMBR, A1M2, A2M1
|
|
|
|
real AL,BL,D2R,Pi2
|
|
|
|
data AL/6378206.4/ ! Clarke 1866 ellipsoid
|
|
data BL/6356583.8/
|
|
c real pi /3.14159265359/
|
|
data D2R/0.01745329251994/ ! degrees to radians conversion factor
|
|
data Pi2/6.28318530718/
|
|
|
|
BOA = BL/AL
|
|
F = 1.0 - BOA
|
|
c convert st/end pts to radians
|
|
P1R = Eplat * D2R
|
|
P2R = Stlat * D2R
|
|
L1R = Eplon * D2R
|
|
L2R = StLon * D2R
|
|
DLR = L2R - L1R ! DLR = Delta Long in Rads
|
|
T1R = ATan(BOA * Tan(P1R))
|
|
T2R = ATan(BOA * Tan(P2R))
|
|
TM = (T1R + T2R) / 2.0
|
|
DTM = (T2R - T1R) / 2.0
|
|
STM = Sin(TM)
|
|
CTM = Cos(TM)
|
|
SDTM = Sin(DTM)
|
|
CDTM = Cos(DTM)
|
|
KL = STM * CDTM
|
|
KK = SDTM * CTM
|
|
SDLMR = Sin(DLR/2.0)
|
|
L = SDTM * SDTM + SDLMR * SDLMR * (CDTM * CDTM - STM * STM)
|
|
CD = 1.0 - 2.0 * L
|
|
DL = ACos(CD)
|
|
SD = Sin(DL)
|
|
T = DL/SD
|
|
U = 2.0 * KL * KL / (1.0 - L)
|
|
V = 2.0 * KK * KK / L
|
|
D = 4.0 * T * T
|
|
X = U + V
|
|
E = -2.0 * CD
|
|
Y = U - V
|
|
A = -D * E
|
|
FF64 = F * F / 64.0
|
|
Dist = AL*SD*(T -(F/4.0)*(T*X-Y)+FF64*(X*(A+(T-(A+E)
|
|
+ /2.0)*X)+Y*(-2.0*D+E*Y)+D*X*Y))/1000.0
|
|
TDLPM = Tan((DLR+(-((E*(4.0-X)+2.0*Y)*((F/2.0)*T+FF64*
|
|
+ (32.0*T+(A-20.0*T)*X-2.0*(D+2.0)*Y))/4.0)*Tan(DLR)))/2.0)
|
|
HAPBR = ATan2(SDTM,(CTM*TDLPM))
|
|
HAMBR = Atan2(CDTM,(STM*TDLPM))
|
|
A1M2 = Pi2 + HAMBR - HAPBR
|
|
A2M1 = Pi2 - HAMBR - HAPBR
|
|
|
|
1 If ((A1M2 .ge. 0.0) .AND. (A1M2 .lt. Pi2)) GOTO 5
|
|
If (A1M2 .lt. Pi2) GOTO 4
|
|
A1M2 = A1M2 - Pi2
|
|
GOTO 1
|
|
4 A1M2 = A1M2 + Pi2
|
|
GOTO 1
|
|
c
|
|
c all of this gens the proper az, baz (forward and back azimuth)
|
|
c
|
|
|
|
5 If ((A2M1 .ge. 0.0) .AND. (A2M1 .lt. Pi2)) GOTO 9
|
|
If (A2M1 .lt. Pi2) GOTO 8
|
|
A2M1 = A2M1 - Pi2
|
|
GOTO 5
|
|
8 A2M1 = A2M1 + Pi2
|
|
GOTO 5
|
|
|
|
9 Az = A1M2 / D2R
|
|
BAZ = A2M1 / D2R
|
|
c
|
|
c Fix the mirrored coords here.
|
|
c
|
|
az = 360.0 - az
|
|
baz = 360.0 - baz
|
|
end
|