WSJT-X/spec.f90
Joe Taylor 1dc4d639f1 Working on the T/R sequencing. This is better, I think. No "blackouts".
But still can be improved ...  Perhaps accept packets from Linrad even
while transmitting, but zero them out?  Then might still be able to
decode a sequence interrupted by a short, aborted, trenamission?


git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/map65@989 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2008-07-23 20:27:47 +00:00

145 lines
3.4 KiB
Fortran

subroutine spec(brightness,contrast,ngain,nspeed,a,a2)
parameter (NX=750,NY=130,NTOT=NX*NY)
! Input:
integer brightness,contrast !Display parameters
integer ngain !Digital gain for input audio
integer nspeed !Scrolling speed index
! Output:
integer*2 a(NTOT) !Pixel values for NX x NY array
integer*2 a2(NTOT) !Pixel values for NX x NY array
logical first
integer nstep(5)
integer b0,c0
integer hist(0:1000)
! Could save memory by doing the averaging-by-7 (or 10?) of ss5 in symspec.
include 'spcom.f90'
real s(NFFT,NY),savg2(NFFT)
include 'gcom1.f90'
include 'gcom2.f90'
include 'gcom3.f90'
include 'gcom4.f90'
data first/.true./
data nstep/28,20,14,10,7/ !Integration limits
save
if(first) then
df=96000.0/nfft
call zero(a,NX*NY/2)
call zero(a2,NX*NY/2)
first=.false.
endif
nadd=nstep(nspeed)
nlines=322/nadd
call zero(s,NFFT*NY)
k=0
do j=1,nlines
do n=1,nadd
k=k+1
do i=1,NFFT
s(i,j)=s(i,j) + ss5(k,i)
enddo
enddo
enddo
call zero(savg2,NFFT)
do j=1,nlines
do i=1,NFFT
savg2(i)=savg2(i) + s(i,j)
enddo
enddo
ia=0.08*NFFT
ib=0.92*NFFT
smin=1.e30
smax=-smin
sum=0.
nsum=0
do i=ia,ib
smin=min(savg2(i),smin)
smax=max(savg2(i),smax)
if(savg2(i).lt.10000.0) then
sum=sum + savg2(i)
nsum=nsum+1
endif
enddo
ave=sum/nsum
call zero(hist,1001)
do i=ia,ib
n=savg2(i) * (300.0/ave)
if(n.gt.1000) n=1000
if(n.ge.0 .and. n.le.1000) hist(n)=hist(n)+1
enddo
sum=0.
do i=0,1000
sum=sum + float(hist(i))/(ib-ia+1)
if(sum.gt.0.4) go to 10
enddo
10 base=i*ave/300.0
base=base/(nadd*nlines)
newpts=NX*nlines
do i=newpts+1,NX*NY
a(i)=a(i-newpts)
a2(i)=a2(i-newpts)
enddo
logmap=1
gamma=1.3 + 0.01*contrast
offset=(brightness+64.0)/2
if(logmap.eq.1) then
gain=40*sqrt(nstep(nspeed)/5.0) * 5.0**(0.01*contrast)
offset=brightness/2 + 10
endif
fac=20.0/nadd
fac=fac*0.065/base
! fac=fac*(0.1537/base)
foffset=0.001*(1270+nfcal)
nbpp=(nfb-nfa)*NFFT/(96.0*NX) !Bins per pixel in wideband (upper) waterfall
fselect=mousefqso + foffset - 1000.d0*(fcenter-144.125d0)
imid=nint(1000.0*(fselect-125.0+48.0)/df)
fmid=0.5*(nfa+nfb) + foffset
imid0=nint(1000.0*(fmid-125.0+48.0)/df) - nbpp/2 !Last term is empirical
i0=imid-375
ii0=imid0-375*nbpp
! if(nfullspec.eq.1) then
! nbpp=NFFT/NX
! ii0=0
! endif
k=0
do j=nlines,1,-1 !Reverse order so last will be on top
do i=1,NX
k=k+1
n=0
x=0.
iia=(i-1)*nbpp + ii0 + 1
iib=i*nbpp + ii0
do ii=iia,iib
x=max(x,s(ii,j))
enddo
x=fac*x
if(x.gt.0.0 .and. logmap.eq.0) n=(2.0*x)**gamma + offset
if(x.gt.0.0 .and. logmap.eq.1) n=gain*log10(1.0*x) + offset
n=min(252,max(0,n))
a(k)=n
! Now do the lower (zoomed) waterfall with one FFT bin per pixel.
n=0
x=fac*s(i0+i-1,j)
if(x.gt.0.0 .and. logmap.eq.0) n=(3.0*x)**gamma + offset
if(x.gt.0.0 .and. logmap.eq.1) n=1.2*gain*log10(1.0*x) + offset
n=min(252,max(0,n))
a2(k)=n
enddo
enddo
return
end subroutine spec