mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			124 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2015.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning(disable : 4756) // overflow in constant arithmetic
 | |
| // Constants are too big for float case, but this doesn't matter for test.
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/concepts/real_concept.hpp>
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include "functor.hpp"
 | |
| 
 | |
| #include "handle_test_result.hpp"
 | |
| #include "table_type.hpp"
 | |
| 
 | |
| #ifndef SC_
 | |
| #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
 | |
| #endif
 | |
| 
 | |
| template <class Real, typename T>
 | |
| void do_test_ellint_d2(const T& data, const char* type_name, const char* test)
 | |
| {
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_D2_FUNCTION_TO_TEST))
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    std::cout << "Testing: " << test << std::endl;
 | |
| 
 | |
| #ifdef ELLINT_D2_FUNCTION_TO_TEST
 | |
|    value_type(*fp2)(value_type, value_type) = ELLINT_D2_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|     value_type (*fp2)(value_type, value_type) = boost::math::ellint_d<value_type, value_type>;
 | |
| #else
 | |
|     value_type (*fp2)(value_type, value_type) = boost::math::ellint_d;
 | |
| #endif
 | |
|     boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
|     result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(fp2, 1, 0),
 | |
|       extract_result<Real>(2));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(),
 | |
|       type_name, "ellint_d", test);
 | |
| 
 | |
|    std::cout << std::endl;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <class Real, typename T>
 | |
| void do_test_ellint_d1(T& data, const char* type_name, const char* test)
 | |
| {
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_D1_FUNCTION_TO_TEST))
 | |
|    typedef Real                   value_type;
 | |
|     boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
|    std::cout << "Testing: " << test << std::endl;
 | |
| 
 | |
| #ifdef ELLINT_D1_FUNCTION_TO_TEST
 | |
|    value_type(*fp1)(value_type) = ELLINT_D1_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|    value_type (*fp1)(value_type) = boost::math::ellint_d<value_type>;
 | |
| #else
 | |
|    value_type (*fp1)(value_type) = boost::math::ellint_d;
 | |
| #endif
 | |
|    result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(fp1, 0),
 | |
|       extract_result<Real>(1));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(),
 | |
|       type_name, "ellint_d (complete)", test);
 | |
| 
 | |
|    std::cout << std::endl;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_spots(T, const char* type_name)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     // Function values calculated on http://functions.wolfram.com/
 | |
|     // Note that Mathematica's EllipticE accepts k^2 as the second parameter.
 | |
|     static const boost::array<boost::array<T, 3>, 10> data1 = {{
 | |
|        { { SC_(0.5), SC_(0.5), SC_(0.040348098248931543984282958654503585) } },
 | |
|         {{ SC_(0), SC_(0.5), SC_(0) }},
 | |
|         { { SC_(1), SC_(0.5), SC_(0.28991866293419922467977188008516755) } },
 | |
|         { { SC_(1), T(1), SC_(0.38472018607562056416055864584160775) } },
 | |
|         { { SC_(-1), T(1), SC_(-0.38472018607562056416055864584160775) } },
 | |
|         { { SC_(-1), T(0.5), SC_(-0.28991866293419922467977188008516755) } },
 | |
|         { { SC_(-10), T(0.5), SC_(-5.2996914501577855803123384771117708) } },
 | |
|         { { SC_(10), SC_(-0.5), SC_(5.2996914501577855803123384771117708) } },
 | |
|     }};
 | |
| 
 | |
|     do_test_ellint_d2<T>(data1, type_name, "Elliptic Integral E: Mathworld Data");
 | |
| 
 | |
| #include "ellint_d2_data.ipp"
 | |
| 
 | |
|     do_test_ellint_d2<T>(ellint_d2_data, type_name, "Elliptic Integral D: Random Data");
 | |
| 
 | |
|     // Function values calculated on http://functions.wolfram.com/
 | |
|     // Note that Mathematica's EllipticE accepts k^2 as the second parameter.
 | |
|     static const boost::array<boost::array<T, 2>, 3> data2 = {{
 | |
|        { { SC_(0.5), SC_(0.87315258189267554964563356323264341) } },
 | |
|        { { SC_(1.0) / 1024, SC_(0.78539844427788694671464428063604776) } },
 | |
|        { { boost::math::tools::root_epsilon<T>(), SC_(0.78539816339744830961566084581987572) } }
 | |
|     }};
 | |
| 
 | |
|     do_test_ellint_d1<T>(data2, type_name, "Elliptic Integral E: Mathworld Data");
 | |
| 
 | |
| #include "ellint_d_data.ipp"
 | |
| 
 | |
|     do_test_ellint_d1<T>(ellint_d_data, type_name, "Elliptic Integral D: Random Data");
 | |
| 
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(1)), std::domain_error);
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(-1)), std::domain_error);
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(1.5)), std::domain_error);
 | |
|     BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(-1.5)), std::domain_error);
 | |
| }
 | |
| 
 |