mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			95 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright John Maddock 2015.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning(disable : 4756) // overflow in constant arithmetic
 | |
| // Constants are too big for float case, but this doesn't matter for test.
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/concepts/real_concept.hpp>
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| //#include <boost/math/special_functions/next.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include "functor.hpp"
 | |
| 
 | |
| #include "handle_test_result.hpp"
 | |
| #include "table_type.hpp"
 | |
| 
 | |
| #ifndef SC_
 | |
| #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
 | |
| #endif
 | |
| 
 | |
| template <class Real, typename T>
 | |
| void do_test_jacobi_zeta(const T& data, const char* type_name, const char* test)
 | |
| {
 | |
| #if !(defined(ERROR_REPORTING_MODE) && !defined(JACOBI_ZETA_FUNCTION_TO_TEST))
 | |
|    typedef Real                   value_type;
 | |
| 
 | |
|    std::cout << "Testing: " << test << std::endl;
 | |
| 
 | |
| #ifdef JACOBI_ZETA_FUNCTION_TO_TEST
 | |
|    value_type(*fp2)(value_type, value_type) = JACOBI_ZETA_FUNCTION_TO_TEST;
 | |
| #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | |
|     value_type (*fp2)(value_type, value_type) = boost::math::ellint_d<value_type, value_type>;
 | |
| #else
 | |
|    value_type(*fp2)(value_type, value_type) = boost::math::jacobi_zeta;
 | |
| #endif
 | |
|     boost::math::tools::test_result<value_type> result;
 | |
| 
 | |
|     result = boost::math::tools::test_hetero<Real>(
 | |
|       data,
 | |
|       bind_func<Real>(fp2, 1, 0),
 | |
|       extract_result<Real>(2));
 | |
|    handle_test_result(result, data[result.worst()], result.worst(),
 | |
|       type_name, "jacobi_zeta", test);
 | |
| 
 | |
|    std::cout << std::endl;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void test_spots(T, const char* type_name)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     // Function values calculated on http://functions.wolfram.com/
 | |
|     // Note that Mathematica's EllipticE accepts k^2 as the second parameter.
 | |
|     static const boost::array<boost::array<T, 3>, 18> data1 = {{
 | |
|        { { SC_(0.5), SC_(0.5), SC_(0.055317014255129651475392155709691519) } },
 | |
|        { { SC_(-0.5), SC_(0.5), SC_(-0.055317014255129651475392155709691519) } },
 | |
|         { { SC_(0), SC_(0.5), SC_(0) } },
 | |
|         { { SC_(1), T(0.5), SC_(0.061847782565098669252626761181452815) } },
 | |
| //        { { boost::math::float_prior(boost::math::constants::half_pi<T>()), T(0.5), SC_(0) } },
 | |
|         { { SC_(1), T(0), SC_(0) } },
 | |
|         { { SC_(1), T(1), SC_(0.84147098480789650665250232163029900) } },
 | |
|         { { SC_(2), T(0.5), SC_(-0.051942537457672732722176231281435254) } },
 | |
|         { { SC_(5), T(0.5), SC_(-0.037609329968145259476447488930872898) } },
 | |
|         { { SC_(0.5), SC_(1), SC_(0.479425538604203000273287935215571388081803367940600675188616) } },
 | |
|        { { boost::math::constants::half_pi<T>() - static_cast<T>(1) / 1024, SC_(1), SC_(0.999999523162879692486369202949889069215510235208243466564977) } },
 | |
|        { { boost::math::constants::half_pi<T>() + static_cast<T>(1) / 1024, SC_(1), SC_(-0.999999523162879692486369202949889069215510235208243466564977) } },
 | |
|        { { SC_(2), SC_(1), SC_(-0.90929742682568169539601986591174484270225497144789026837897) } },
 | |
|        { { SC_(3), SC_(1), SC_(-0.14112000805986722210074480280811027984693326425226558415188) } },
 | |
|        { { SC_(4), SC_(1), SC_(0.756802495307928251372639094511829094135912887336472571485416) } },
 | |
|         { { SC_(-0.5), SC_(1), SC_(-0.479425538604203000273287935215571388081803367940600675188616) } },
 | |
|        { { SC_(-2), SC_(1), SC_(0.90929742682568169539601986591174484270225497144789026837897) } },
 | |
|        { { SC_(-3), SC_(1), SC_(0.14112000805986722210074480280811027984693326425226558415188) } },
 | |
|        { { SC_(-4), SC_(1), SC_(-0.756802495307928251372639094511829094135912887336472571485416) } },
 | |
|     }};
 | |
| 
 | |
|     do_test_jacobi_zeta<T>(data1, type_name, "Elliptic Integral Jacobi Zeta: Mathworld Data");
 | |
| 
 | |
| #include "jacobi_zeta_data.ipp"
 | |
| 
 | |
|     do_test_jacobi_zeta<T>(jacobi_zeta_data, type_name, "Elliptic Integral Jacobi Zeta: Random Data");
 | |
| 
 | |
| #include "jacobi_zeta_big_phi.ipp"
 | |
| 
 | |
|     do_test_jacobi_zeta<T>(jacobi_zeta_big_phi, type_name, "Elliptic Integral Jacobi Zeta: Large Phi Values");
 | |
| }
 | |
| 
 |