WSJT-X/lib/ldpcsim128_90.f90

170 lines
4.4 KiB
Fortran

program ldpcsim
use, intrinsic :: iso_c_binding
use iso_c_binding, only: c_loc,c_size_t
use crc
use packjt
integer, parameter:: NRECENT=10, N=128, K=90, M=N-K
character*12 recent_calls(NRECENT)
character*22 msg,msgsent,msgreceived
character*96 tmpchar
character*8 arg
integer*1, allocatable :: codeword(:), decoded(:), message(:)
integer*1, target:: i1Msg8BitBytes(12)
integer*1 i1hash(4)
integer*1 msgbits(80)
integer*4 i4Msg6BitWords(13)
integer ihash
integer nerrtot(N),nerrdec(N),nmpcbad(K)
real*8, allocatable :: lratio(:), rxdata(:), rxavgd(:)
real, allocatable :: yy(:), llr(:)
equivalence(ihash,i1hash)
do i=1,NRECENT
recent_calls(i)=' '
enddo
nerrtot=0
nerrdec=0
nargs=iargc()
if(nargs.ne.4) then
print*,'Usage: ldpcsim niter navg #trials s '
print*,'eg: ldpcsim 10 1 1000 0.75'
return
endif
call getarg(1,arg)
read(arg,*) max_iterations
call getarg(2,arg)
read(arg,*) navg
call getarg(3,arg)
read(arg,*) ntrials
call getarg(4,arg)
read(arg,*) s
! don't count hash bits as data bits
rate=real(K)/real(N)
write(*,*) "rate: ",rate
write(*,*) "niter= ",max_iterations," navg= ",navg," s= ",s
allocate ( codeword(N), decoded(K), message(K) )
allocate ( lratio(N), rxdata(N), rxavgd(N), yy(N), llr(N) )
msg="K9AN K1JT EN50"
call packmsg(msg,i4Msg6BitWords,itype,.false.) !Pack into 12 6-bit bytes
call unpackmsg(i4Msg6BitWords,msgsent,.false.,' ') !Unpack to get msgsent
write(*,*) "message sent ",msgsent
tmpchar=' '
write(tmpchar,'(12b6.6)') i4Msg6BitWords
tmpchar(73:77)="00000" !i5bit
write(*,*) tmpchar
read(tmpchar,'(10b8)') i1Msg8BitBytes(1:10)
write(*,*) i1Msg8BitBytes
i1Msg8BitBytes(10:12)=0
checksum = crc13 (c_loc (i1Msg8ZBitZBytes), 12)
i1Msg8BitBytes(11)=checksum/256
i1Msg8BitBytes(12)=iand (checksum,255)
checksumok = crc13_check(c_loc (i1Msg8ZBitBytes), 12)
if( checksumok ) write(*,*) 'Good checksum'
write(tmpchar,'(12b8.8)') i1Msg8BitBytes(1:9)
read(tmpchar,'(77b)') msgbits(1:77)
read(tmpchar(84:96),'(6b)') msgbits(78:90)
call encode_128_90(msgbits,codeword)
call init_random_seed()
write(*,*) "Eb/N0 SNR2500 ngood nundetected nbadhash sigma"
do idb = -6, 14
db=idb/2.0-1.0
sigma=1/sqrt( 2*rate*(10**(db/10.0)) )
ngood=0
nue=0
nbadhash=0
do itrial=1, ntrials
rxavgd=0d0
do iav=1,navg
call sgran()
! Create a realization of a noisy received word
do i=1,N
rxdata(i) = 2.0*codeword(i)-1.0 + sigma*gran()
enddo
rxavgd=rxavgd+rxdata
enddo
rxdata=rxavgd
nerr=0
do i=1,N
if( rxdata(i)*(2*codeword(i)-1.0) .lt. 0 ) nerr=nerr+1
enddo
nerrtot(nerr)=nerrtot(nerr)+1
! Correct signal normalization is important for this decoder.
rxav=sum(rxdata)/N
rx2av=sum(rxdata*rxdata)/N
rxsig=sqrt(rx2av-rxav*rxav)
rxdata=rxdata/rxsig
! To match the metric to the channel, s should be set to the noise standard deviation.
! For now, set s to the value that optimizes decode probability near threshold.
! The s parameter can be tuned to trade a few tenth's dB of threshold for an order of
! magnitude in UER
if( s .lt. 0 ) then
ss=sigma
else
ss=s
endif
llr=2.0*rxdata/(ss*ss)
lratio=exp(llr)
yy=rxdata
! max_iterations is max number of belief propagation iterations
call bpdecode128_90(llr, apmask, max_iterations, decoded, cw, nharderrors, niterations)
! If the decoder finds a valid codeword, nharderrors will be .ge. 0.
if( nharderrors .ge. 0 ) then
call extractmessage1128_90(decoded,msgreceived,ncrcflag)
if( nncrcflag .ne. 1 ) then
nbadcrc=nbadcrc+1
endif
nueflag=0
nerrmpc=0
do i=1,K
if( msgbits(i) .ne. decoded(i) ) then
nueflag=1
nerrmpc=nerrmpc+1
endif
enddo
if(nerrmpc.ge.1) nmpcbad(nerrmpc)=nmpcbad(nerrmpc)+1
if( ncrcflag .eq. 1) then
ngood=ngood+1
if(nerr.ge.1) nerrdec(nerr)=nerrdec(nerr)+1
else if(nueflag .eq. 1 ) then
nue=nue+1;
endif
endif
enddo
snr2500=db-3.5
pberr=real(nberr)/real(ntrials*N)
write(*,"(f4.1,4x,f5.1,1x,i8,1x,i8,1x,i8,8x,f5.2,8x,e10.3)") db,snr2500,ngood,nue,nbadcrc,ss,pberr
enddo
open(unit=23,file='nerrhisto.dat',status='unknown')
do i=1,N
write(23,'(i4,2x,i10,i10,f10.2)') i,nerrdec(i),nerrtot(i),real(nerrdec(i))/real(nerrtot(i)+1e-10)
enddo
close(23)
open(unit=25,file='nmpcbad.dat',status='unknown')
do i=1,K
write(25,'(i4,2x,i10)') i,nmpcbad(i)
enddo
close(25)
end program ldpcsim