WSJT-X/boost/boost/multiprecision/complex_adaptor.hpp

861 lines
26 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright 2018 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MULTIPRECISION_COMPLEX_ADAPTOR_HPP
#define BOOST_MULTIPRECISION_COMPLEX_ADAPTOR_HPP
#include <boost/multiprecision/number.hpp>
#include <boost/cstdint.hpp>
#include <boost/multiprecision/detail/digits.hpp>
#include <boost/functional/hash_fwd.hpp>
#include <boost/type_traits/is_complex.hpp>
#include <cmath>
#include <algorithm>
#include <complex>
namespace boost{
namespace multiprecision{
namespace backends{
template <class Backend>
struct complex_adaptor
{
protected:
Backend m_real, m_imag;
public:
Backend& real_data()
{
return m_real;
}
const Backend& real_data() const
{
return m_real;
}
Backend& imag_data()
{
return m_imag;
}
const Backend& imag_data() const
{
return m_imag;
}
typedef typename Backend::signed_types signed_types;
typedef typename Backend::unsigned_types unsigned_types;
typedef typename Backend::float_types float_types;
typedef typename Backend::exponent_type exponent_type;
complex_adaptor() {}
complex_adaptor(const complex_adaptor& o) : m_real(o.real_data()), m_imag(o.imag_data()) {}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
complex_adaptor(complex_adaptor&& o) : m_real(std::move(o.real_data())), m_imag(std::move(o.imag_data())) {}
#endif
complex_adaptor(const Backend& val)
: m_real(val) {}
complex_adaptor(const std::complex<float>& val)
{
m_real = (long double)val.real();
m_imag = (long double)val.imag();
}
complex_adaptor(const std::complex<double>& val)
{
m_real = (long double)val.real();
m_imag = (long double)val.imag();
}
complex_adaptor(const std::complex<long double>& val)
{
m_real = val.real();
m_imag = val.imag();
}
complex_adaptor& operator=(const complex_adaptor& o)
{
m_real = o.real_data();
m_imag = o.imag_data();
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
complex_adaptor& operator=(complex_adaptor&& o) BOOST_NOEXCEPT
{
m_real = std::move(o.real_data());
m_imag = std::move(o.imag_data());
return *this;
}
#endif
template <class V>
complex_adaptor& operator=(const V& v)
{
typedef typename mpl::front<unsigned_types>::type ui_type;
m_real = v;
m_imag = ui_type(0u);
return *this;
}
template <class T>
complex_adaptor& operator=(const std::complex<T>& val)
{
m_real = (long double)val.real();
m_imag = (long double)val.imag();
return *this;
}
complex_adaptor& operator = (const char* s)
{
typedef typename mpl::front<unsigned_types>::type ui_type;
ui_type zero = 0u;
using default_ops::eval_fpclassify;
if (s && (*s == '('))
{
std::string part;
const char* p = ++s;
while (*p && (*p != ',') && (*p != ')'))
++p;
part.assign(s, p);
if(part.size())
real_data() = part.c_str();
else
real_data() = zero;
s = p;
if (*p && (*p != ')'))
{
++p;
while (*p && (*p != ')'))
++p;
part.assign(s + 1, p);
}
else
part.erase();
if(part.size())
imag_data() = part.c_str();
else
imag_data() = zero;
if (eval_fpclassify(imag_data()) == (int)FP_NAN)
{
real_data() = imag_data();
}
}
else
{
real_data() = s;
imag_data() = zero;
}
return *this;
}
int compare(const complex_adaptor& o)const
{
// They are either equal or not:
return (m_real.compare(o.real_data()) == 0) && (m_imag.compare(o.imag_data()) == 0) ? 0 : 1;
}
template <class T>
int compare(const T& val)const
{
using default_ops::eval_is_zero;
return (m_real.compare(val) == 0) && eval_is_zero(m_imag) ? 0 : 1;
}
void swap(complex_adaptor& o)
{
real_data().swap(o.real_data());
imag_data().swap(o.imag_data());
}
std::string str(std::streamsize dig, std::ios_base::fmtflags f)const
{
using default_ops::eval_is_zero;
if (eval_is_zero(imag_data()))
return m_real.str(dig, f);
return "(" + m_real.str(dig, f) + "," + m_imag.str(dig, f) + ")";
}
void negate()
{
m_real.negate();
m_imag.negate();
}
};
template <class Backend, class T>
inline typename enable_if<is_arithmetic<T>, bool>::type eval_eq(const complex_adaptor<Backend>& a, const T& b) BOOST_NOEXCEPT
{
return a.compare(b) == 0;
}
template <class Backend>
inline void eval_add(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o)
{
eval_add(result.real_data(), o.real_data());
eval_add(result.imag_data(), o.imag_data());
}
template <class Backend>
inline void eval_subtract(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o)
{
eval_subtract(result.real_data(), o.real_data());
eval_subtract(result.imag_data(), o.imag_data());
}
template <class Backend>
inline void eval_multiply(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o)
{
Backend t1, t2, t3;
eval_multiply(t1, result.real_data(), o.real_data());
eval_multiply(t2, result.imag_data(), o.imag_data());
eval_subtract(t3, t1, t2);
eval_multiply(t1, result.real_data(), o.imag_data());
eval_multiply(t2, result.imag_data(), o.real_data());
eval_add(t1, t2);
result.real_data() = BOOST_MP_MOVE(t3);
result.imag_data() = BOOST_MP_MOVE(t1);
}
template <class Backend>
inline void eval_divide(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& z)
{
// (a+bi) / (c + di)
using default_ops::eval_fabs;
using default_ops::eval_divide;
using default_ops::eval_multiply;
using default_ops::eval_subtract;
using default_ops::eval_add;
using default_ops::eval_is_zero;
Backend t1, t2;
if (eval_is_zero(z.imag_data()))
{
eval_divide(result.real_data(), z.real_data());
eval_divide(result.imag_data(), z.real_data());
return;
}
eval_fabs(t1, z.real_data());
eval_fabs(t2, z.imag_data());
if (t1.compare(t2) < 0)
{
eval_divide(t1, z.real_data(), z.imag_data()); // t1 = c/d
eval_multiply(t2, z.real_data(), t1);
eval_add(t2, z.imag_data()); // denom = c * (c/d) + d
Backend t_real(result.real_data());
// real = (a * (c/d) + b) / (denom)
eval_multiply(result.real_data(), t1);
eval_add(result.real_data(), result.imag_data());
eval_divide(result.real_data(), t2);
// imag = (b * c/d - a) / denom
eval_multiply(result.imag_data(), t1);
eval_subtract(result.imag_data(), t_real);
eval_divide(result.imag_data(), t2);
}
else
{
eval_divide(t1, z.imag_data(), z.real_data()); // t1 = d/c
eval_multiply(t2, z.imag_data(), t1);
eval_add(t2, z.real_data()); // denom = d * d/c + c
Backend r_t(result.real_data());
Backend i_t(result.imag_data());
// real = (b * d/c + a) / denom
eval_multiply(result.real_data(), result.imag_data(), t1);
eval_add(result.real_data(), r_t);
eval_divide(result.real_data(), t2);
// imag = (-a * d/c + b) / denom
eval_multiply(result.imag_data(), r_t, t1);
result.imag_data().negate();
eval_add(result.imag_data(), i_t);
eval_divide(result.imag_data(), t2);
}
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_add(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_add;
eval_add(result.real_data(), scalar);
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_subtract(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_subtract;
eval_subtract(result.real_data(), scalar);
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_multiply(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_multiply;
eval_multiply(result.real_data(), scalar);
eval_multiply(result.imag_data(), scalar);
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_divide(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_divide;
eval_divide(result.real_data(), scalar);
eval_divide(result.imag_data(), scalar);
}
// Optimised 3 arg versions:
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_add(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_add;
eval_add(result.real_data(), a.real_data(), scalar);
result.imag_data() = a.imag_data();
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_subtract(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_subtract;
eval_subtract(result.real_data(), a.real_data(), scalar);
result.imag_data() = a.imag_data();
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_multiply(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_multiply;
eval_multiply(result.real_data(), a.real_data(), scalar);
eval_multiply(result.imag_data(), a.imag_data(), scalar);
}
template <class Backend, class T>
inline typename boost::disable_if_c<boost::is_same<complex_adaptor<Backend>, T>::value>::type eval_divide(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_divide;
eval_divide(result.real_data(), a.real_data(), scalar);
eval_divide(result.imag_data(), a.imag_data(), scalar);
}
template <class Backend>
inline bool eval_is_zero(const complex_adaptor<Backend>& val) BOOST_NOEXCEPT
{
using default_ops::eval_is_zero;
return eval_is_zero(val.real_data()) && eval_is_zero(val.imag_data());
}
template <class Backend>
inline int eval_get_sign(const complex_adaptor<Backend>&)
{
BOOST_STATIC_ASSERT_MSG(sizeof(Backend) == UINT_MAX, "Complex numbers have no sign bit."); // designed to always fail
return 0;
}
template <class Result, class Backend>
inline typename disable_if_c<boost::is_complex<Result>::value>::type eval_convert_to(Result* result, const complex_adaptor<Backend>& val)
{
using default_ops::eval_is_zero;
using default_ops::eval_convert_to;
if (!eval_is_zero(val.imag_data()))
{
BOOST_THROW_EXCEPTION(std::runtime_error("Could not convert imaginary number to scalar."));
}
eval_convert_to(result, val.real_data());
}
template <class Backend, class T>
inline void assign_components(complex_adaptor<Backend>& result, const T& a, const T& b)
{
result.real_data() = a;
result.imag_data() = b;
}
//
// Native non-member operations:
//
template <class Backend>
inline void eval_sqrt(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& val)
{
// Use the following:
// sqrt(z) = (s, zi / 2s) for zr >= 0
// (|zi| / 2s, +-s) for zr < 0
// where s = sqrt{ [ |zr| + sqrt(zr^2 + zi^2) ] / 2 },
// and the +- sign is the same as the sign of zi.
using default_ops::eval_get_sign;
using default_ops::eval_abs;
using default_ops::eval_divide;
using default_ops::eval_add;
using default_ops::eval_is_zero;
if (eval_is_zero(val.imag_data()) && (eval_get_sign(val.real_data())>= 0))
{
static const typename mpl::front<typename Backend::unsigned_types>::type zero = 0u;
eval_sqrt(result.real_data(), val.real_data());
result.imag_data() = zero;
return;
}
const bool __my_real_part_is_neg(eval_get_sign(val.real_data()) < 0);
Backend __my_real_part_fabs(val.real_data());
if (__my_real_part_is_neg)
__my_real_part_fabs.negate();
Backend t, __my_sqrt_part;
eval_abs(__my_sqrt_part, val);
eval_add(__my_sqrt_part, __my_real_part_fabs);
eval_ldexp(t, __my_sqrt_part, -1);
eval_sqrt(__my_sqrt_part, t);
if (__my_real_part_is_neg == false)
{
eval_ldexp(t, __my_sqrt_part, 1);
eval_divide(result.imag_data(), val.imag_data(), t);
result.real_data() = __my_sqrt_part;
}
else
{
const bool __my_imag_part_is_neg(eval_get_sign(val.imag_data()) < 0);
Backend __my_imag_part_fabs(val.imag_data());
if (__my_imag_part_is_neg)
__my_imag_part_fabs.negate();
eval_ldexp(t, __my_sqrt_part, 1);
eval_divide(result.real_data(), __my_imag_part_fabs, t);
if (__my_imag_part_is_neg)
__my_sqrt_part.negate();
result.imag_data() = __my_sqrt_part;
}
}
template <class Backend>
inline void eval_abs(Backend& result, const complex_adaptor<Backend>& val)
{
Backend t1, t2;
eval_multiply(t1, val.real_data(), val.real_data());
eval_multiply(t2, val.imag_data(), val.imag_data());
eval_add(t1, t2);
eval_sqrt(result, t1);
}
template <class Backend>
inline void eval_pow(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& b, const complex_adaptor<Backend>& e)
{
using default_ops::eval_is_zero;
using default_ops::eval_get_sign;
using default_ops::eval_acos;
using default_ops::eval_multiply;
using default_ops::eval_exp;
using default_ops::eval_cos;
using default_ops::eval_sin;
if (eval_is_zero(e))
{
typename mpl::front<typename Backend::unsigned_types>::type one(1);
result = one;
return;
}
else if (eval_is_zero(b))
{
if (eval_is_zero(e.real_data()))
{
Backend n = std::numeric_limits<number<Backend> >::quiet_NaN().backend();
result.real_data() = n;
result.imag_data() = n;
}
else if (eval_get_sign(e.real_data()) < 0)
{
Backend n = std::numeric_limits<number<Backend> >::infinity().backend();
result.real_data() = n;
typename mpl::front<typename Backend::unsigned_types>::type zero(0);
if (eval_is_zero(e.imag_data()))
result.imag_data() = zero;
else
result.imag_data() = n;
}
else
{
typename mpl::front<typename Backend::unsigned_types>::type zero(0);
result = zero;
}
return;
}
complex_adaptor<Backend> t;
eval_log(t, b);
eval_multiply(t, e);
eval_exp(result, t);
}
template <class Backend>
inline void eval_exp(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_sin;
using default_ops::eval_cos;
using default_ops::eval_exp;
using default_ops::eval_multiply;
using default_ops::eval_is_zero;
if (eval_is_zero(arg.imag_data()))
{
eval_exp(result.real_data(), arg.real_data());
typename mpl::front<typename Backend::unsigned_types>::type zero(0);
result.imag_data() = zero;
return;
}
eval_cos(result.real_data(), arg.imag_data());
eval_sin(result.imag_data(), arg.imag_data());
Backend e;
eval_exp(e, arg.real_data());
if (eval_is_zero(result.real_data()))
eval_multiply(result.imag_data(), e);
else if (eval_is_zero(result.imag_data()))
eval_multiply(result.real_data(), e);
else
eval_multiply(result, e);
}
template <class Backend>
inline void eval_log(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_log;
using default_ops::eval_multiply;
using default_ops::eval_add;
using default_ops::eval_atan2;
using default_ops::eval_is_zero;
using default_ops::eval_get_sign;
if (eval_is_zero(arg.imag_data()) && (eval_get_sign(arg.real_data()) >= 0))
{
eval_log(result.real_data(), arg.real_data());
typename mpl::front<typename Backend::unsigned_types>::type zero(0);
result.imag_data() = zero;
return;
}
Backend t1, t2;
eval_multiply(t1, arg.real_data(), arg.real_data());
eval_multiply(t2, arg.imag_data(), arg.imag_data());
eval_add(t1, t2);
eval_log(t2, t1);
eval_ldexp(result.real_data(), t2, -1);
eval_atan2(result.imag_data(), arg.imag_data(), arg.real_data());
}
template <class Backend>
inline void eval_log10(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_log;
using default_ops::eval_divide;
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
Backend ten;
ten = ui_type(10);
Backend l_ten;
eval_log(l_ten, ten);
eval_log(result, arg);
eval_divide(result, l_ten);
}
template <class Backend>
inline void eval_sin(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_sin;
using default_ops::eval_cos;
using default_ops::eval_sinh;
using default_ops::eval_cosh;
Backend t1, t2;
eval_sin(t1, arg.real_data());
eval_cosh(t2, arg.imag_data());
eval_multiply(result.real_data(), t1, t2);
eval_cos(t1, arg.real_data());
eval_sinh(t2, arg.imag_data());
eval_multiply(result.imag_data(), t1, t2);
}
template <class Backend>
inline void eval_cos(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_sin;
using default_ops::eval_cos;
using default_ops::eval_sinh;
using default_ops::eval_cosh;
Backend t1, t2;
eval_cos(t1, arg.real_data());
eval_cosh(t2, arg.imag_data());
eval_multiply(result.real_data(), t1, t2);
eval_sin(t1, arg.real_data());
eval_sinh(t2, arg.imag_data());
eval_multiply(result.imag_data(), t1, t2);
result.imag_data().negate();
}
template <class Backend>
inline void eval_tan(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
complex_adaptor<Backend> c;
eval_cos(c, arg);
eval_sin(result, arg);
eval_divide(result, c);
}
template <class Backend>
inline void eval_asin(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_add;
using default_ops::eval_multiply;
if (eval_is_zero(arg))
{
result = arg;
return;
}
complex_adaptor<Backend> t1, t2;
assign_components(t1, arg.imag_data(), arg.real_data());
t1.real_data().negate();
eval_asinh(t2, t1);
assign_components(result, t2.imag_data(), t2.real_data());
result.imag_data().negate();
}
template <class Backend>
inline void eval_acos(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
using default_ops::eval_asin;
Backend half_pi, t1;
t1 = static_cast<ui_type>(1u);
eval_asin(half_pi, t1);
eval_asin(result, arg);
result.negate();
eval_add(result.real_data(), half_pi);
}
template <class Backend>
inline void eval_atan(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_log;
using default_ops::eval_subtract;
using default_ops::eval_is_zero;
complex_adaptor<Backend> __my_z_times_i, t1, t2, t3;
assign_components(__my_z_times_i, arg.imag_data(), arg.real_data());
__my_z_times_i.real_data().negate();
eval_add(t1, __my_z_times_i, one);
eval_log(t2, t1);
eval_subtract(t1, one, __my_z_times_i);
eval_log(t3, t1);
eval_subtract(t1, t3, t2);
eval_ldexp(result.real_data(), t1.imag_data(), -1);
eval_ldexp(result.imag_data(), t1.real_data(), -1);
if(!eval_is_zero(result.real_data()))
result.real_data().negate();
}
template <class Backend>
inline void eval_sinh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_sin;
using default_ops::eval_cos;
using default_ops::eval_sinh;
using default_ops::eval_cosh;
Backend t1, t2;
eval_cos(t1, arg.imag_data());
eval_sinh(t2, arg.real_data());
eval_multiply(result.real_data(), t1, t2);
eval_cosh(t1, arg.real_data());
eval_sin(t2, arg.imag_data());
eval_multiply(result.imag_data(), t1, t2);
}
template <class Backend>
inline void eval_cosh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_sin;
using default_ops::eval_cos;
using default_ops::eval_sinh;
using default_ops::eval_cosh;
Backend t1, t2;
eval_cos(t1, arg.imag_data());
eval_cosh(t2, arg.real_data());
eval_multiply(result.real_data(), t1, t2);
eval_sin(t1, arg.imag_data());
eval_sinh(t2, arg.real_data());
eval_multiply(result.imag_data(), t1, t2);
}
template <class Backend>
inline void eval_tanh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_divide;
complex_adaptor<Backend> s, c;
eval_sinh(s, arg);
eval_cosh(c, arg);
eval_divide(result, s, c);
}
template <class Backend>
inline void eval_asinh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_log;
using default_ops::eval_multiply;
complex_adaptor<Backend> t1, t2;
eval_multiply(t1, arg, arg);
eval_add(t1, one);
eval_sqrt(t2, t1);
eval_add(t2, arg);
eval_log(result, t2);
}
template <class Backend>
inline void eval_acosh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_log;
using default_ops::eval_divide;
using default_ops::eval_subtract;
using default_ops::eval_multiply;
complex_adaptor<Backend> __my_zp(arg);
eval_add(__my_zp.real_data(), one);
complex_adaptor<Backend> __my_zm(arg);
eval_subtract(__my_zm.real_data(), one);
complex_adaptor<Backend> t1, t2;
eval_divide(t1, __my_zm, __my_zp);
eval_sqrt(t2, t1);
eval_multiply(t2, __my_zp);
eval_add(t2, arg);
eval_log(result, t2);
}
template <class Backend>
inline void eval_atanh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_log;
using default_ops::eval_divide;
using default_ops::eval_subtract;
using default_ops::eval_multiply;
complex_adaptor<Backend> t1, t2, t3;
eval_add(t1, arg, one);
eval_log(t2, t1);
eval_subtract(t1, one, arg);
eval_log(t3, t1);
eval_subtract(t2, t3);
eval_ldexp(result.real_data(), t2.real_data(), -1);
eval_ldexp(result.imag_data(), t2.imag_data(), -1);
}
template <class Backend>
inline void eval_conj(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
result = arg;
result.imag_data().negate();
}
template <class Backend>
inline void eval_proj(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_get_sign;
typedef typename mpl::front<typename Backend::unsigned_types>::type ui_type;
ui_type zero = (ui_type)0u;
int c1 = eval_fpclassify(arg.real_data());
int c2 = eval_fpclassify(arg.imag_data());
if (c1 == FP_INFINITE)
{
result.real_data() = arg.real_data();
if (eval_get_sign(result.real_data()) < 0)
result.real_data().negate();
result.imag_data() = zero;
if (eval_get_sign(arg.imag_data()) < 0)
result.imag_data().negate();
}
else if (c2 == FP_INFINITE)
{
result.real_data() = arg.imag_data();
if (eval_get_sign(result.real_data()) < 0)
result.real_data().negate();
result.imag_data() = zero;
if (eval_get_sign(arg.imag_data()) < 0)
result.imag_data().negate();
}
else
result = arg;
}
template <class Backend>
inline void eval_real(Backend& result, const complex_adaptor<Backend>& arg)
{
result = arg.real_data();
}
template <class Backend>
inline void eval_imag(Backend& result, const complex_adaptor<Backend>& arg)
{
result = arg.imag_data();
}
template <class Backend, class T>
inline void eval_set_imag(complex_adaptor<Backend>& result, const T& arg)
{
result.imag_data() = arg;
}
template <class Backend, class T>
inline void eval_set_real(complex_adaptor<Backend>& result, const T& arg)
{
result.real_data() = arg;
}
template <class Backend>
inline std::size_t hash_value(const complex_adaptor<Backend>& val)
{
std::size_t result = hash_value(val.real_data());
std::size_t result2 = hash_value(val.imag_data());
boost::hash_combine(result, result2);
return result;
}
} // namespace backends
using boost::multiprecision::backends::complex_adaptor;
template <class Backend>
struct number_category<complex_adaptor<Backend> > : public boost::mpl::int_<boost::multiprecision::number_kind_complex> {};
template <class Backend, expression_template_option ExpressionTemplates>
struct component_type<number<complex_adaptor<Backend>, ExpressionTemplates> >
{
typedef number<Backend, ExpressionTemplates> type;
};
template <class Backend, expression_template_option ExpressionTemplates>
struct complex_result_from_scalar<number<Backend, ExpressionTemplates> >
{
typedef number<complex_adaptor<Backend>, ExpressionTemplates> type;
};
} // namespace multiprecision
} // namespaces
#endif