mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-09 02:26:06 -05:00
4ebe6417a5
git-subtree-dir: boost git-subtree-split: b4feb19f287ee92d87a9624b5d36b7cf46aeadeb
361 lines
9.8 KiB
C++
361 lines
9.8 KiB
C++
/* boost random/poisson_distribution.hpp header file
|
|
*
|
|
* Copyright Jens Maurer 2002
|
|
* Copyright Steven Watanabe 2010
|
|
* Distributed under the Boost Software License, Version 1.0. (See
|
|
* accompanying file LICENSE_1_0.txt or copy at
|
|
* http://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
* See http://www.boost.org for most recent version including documentation.
|
|
*
|
|
* $Id$
|
|
*
|
|
*/
|
|
|
|
#ifndef BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
|
|
#define BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
|
|
|
|
#include <boost/config/no_tr1/cmath.hpp>
|
|
#include <cstdlib>
|
|
#include <iosfwd>
|
|
#include <boost/assert.hpp>
|
|
#include <boost/limits.hpp>
|
|
#include <boost/random/uniform_01.hpp>
|
|
#include <boost/random/detail/config.hpp>
|
|
|
|
#include <boost/random/detail/disable_warnings.hpp>
|
|
|
|
namespace boost {
|
|
namespace random {
|
|
|
|
namespace detail {
|
|
|
|
template<class RealType>
|
|
struct poisson_table {
|
|
static RealType value[10];
|
|
};
|
|
|
|
template<class RealType>
|
|
RealType poisson_table<RealType>::value[10] = {
|
|
0.0,
|
|
0.0,
|
|
0.69314718055994529,
|
|
1.7917594692280550,
|
|
3.1780538303479458,
|
|
4.7874917427820458,
|
|
6.5792512120101012,
|
|
8.5251613610654147,
|
|
10.604602902745251,
|
|
12.801827480081469
|
|
};
|
|
|
|
}
|
|
|
|
/**
|
|
* An instantiation of the class template @c poisson_distribution is a
|
|
* model of \random_distribution. The poisson distribution has
|
|
* \f$p(i) = \frac{e^{-\lambda}\lambda^i}{i!}\f$
|
|
*
|
|
* This implementation is based on the PTRD algorithm described
|
|
*
|
|
* @blockquote
|
|
* "The transformed rejection method for generating Poisson random variables",
|
|
* Wolfgang Hormann, Insurance: Mathematics and Economics
|
|
* Volume 12, Issue 1, February 1993, Pages 39-45
|
|
* @endblockquote
|
|
*/
|
|
template<class IntType = int, class RealType = double>
|
|
class poisson_distribution {
|
|
public:
|
|
typedef IntType result_type;
|
|
typedef RealType input_type;
|
|
|
|
class param_type {
|
|
public:
|
|
typedef poisson_distribution distribution_type;
|
|
/**
|
|
* Construct a param_type object with the parameter "mean"
|
|
*
|
|
* Requires: mean > 0
|
|
*/
|
|
explicit param_type(RealType mean_arg = RealType(1))
|
|
: _mean(mean_arg)
|
|
{
|
|
BOOST_ASSERT(_mean > 0);
|
|
}
|
|
/* Returns the "mean" parameter of the distribution. */
|
|
RealType mean() const { return _mean; }
|
|
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
|
|
/** Writes the parameters of the distribution to a @c std::ostream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_ostream<CharT, Traits>&
|
|
operator<<(std::basic_ostream<CharT, Traits>& os,
|
|
const param_type& parm)
|
|
{
|
|
os << parm._mean;
|
|
return os;
|
|
}
|
|
|
|
/** Reads the parameters of the distribution from a @c std::istream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_istream<CharT, Traits>&
|
|
operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
|
|
{
|
|
is >> parm._mean;
|
|
return is;
|
|
}
|
|
#endif
|
|
/** Returns true if the parameters have the same values. */
|
|
friend bool operator==(const param_type& lhs, const param_type& rhs)
|
|
{
|
|
return lhs._mean == rhs._mean;
|
|
}
|
|
/** Returns true if the parameters have different values. */
|
|
friend bool operator!=(const param_type& lhs, const param_type& rhs)
|
|
{
|
|
return !(lhs == rhs);
|
|
}
|
|
private:
|
|
RealType _mean;
|
|
};
|
|
|
|
/**
|
|
* Constructs a @c poisson_distribution with the parameter @c mean.
|
|
*
|
|
* Requires: mean > 0
|
|
*/
|
|
explicit poisson_distribution(RealType mean_arg = RealType(1))
|
|
: _mean(mean_arg)
|
|
{
|
|
BOOST_ASSERT(_mean > 0);
|
|
init();
|
|
}
|
|
|
|
/**
|
|
* Construct an @c poisson_distribution object from the
|
|
* parameters.
|
|
*/
|
|
explicit poisson_distribution(const param_type& parm)
|
|
: _mean(parm.mean())
|
|
{
|
|
init();
|
|
}
|
|
|
|
/**
|
|
* Returns a random variate distributed according to the
|
|
* poisson distribution.
|
|
*/
|
|
template<class URNG>
|
|
IntType operator()(URNG& urng) const
|
|
{
|
|
if(use_inversion()) {
|
|
return invert(urng);
|
|
} else {
|
|
return generate(urng);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns a random variate distributed according to the
|
|
* poisson distribution with parameters specified by param.
|
|
*/
|
|
template<class URNG>
|
|
IntType operator()(URNG& urng, const param_type& parm) const
|
|
{
|
|
return poisson_distribution(parm)(urng);
|
|
}
|
|
|
|
/** Returns the "mean" parameter of the distribution. */
|
|
RealType mean() const { return _mean; }
|
|
|
|
/** Returns the smallest value that the distribution can produce. */
|
|
IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
|
|
/** Returns the largest value that the distribution can produce. */
|
|
IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const
|
|
{ return (std::numeric_limits<IntType>::max)(); }
|
|
|
|
/** Returns the parameters of the distribution. */
|
|
param_type param() const { return param_type(_mean); }
|
|
/** Sets parameters of the distribution. */
|
|
void param(const param_type& parm)
|
|
{
|
|
_mean = parm.mean();
|
|
init();
|
|
}
|
|
|
|
/**
|
|
* Effects: Subsequent uses of the distribution do not depend
|
|
* on values produced by any engine prior to invoking reset.
|
|
*/
|
|
void reset() { }
|
|
|
|
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
|
|
/** Writes the parameters of the distribution to a @c std::ostream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_ostream<CharT,Traits>&
|
|
operator<<(std::basic_ostream<CharT,Traits>& os,
|
|
const poisson_distribution& pd)
|
|
{
|
|
os << pd.param();
|
|
return os;
|
|
}
|
|
|
|
/** Reads the parameters of the distribution from a @c std::istream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_istream<CharT,Traits>&
|
|
operator>>(std::basic_istream<CharT,Traits>& is, poisson_distribution& pd)
|
|
{
|
|
pd.read(is);
|
|
return is;
|
|
}
|
|
#endif
|
|
|
|
/** Returns true if the two distributions will produce the same
|
|
sequence of values, given equal generators. */
|
|
friend bool operator==(const poisson_distribution& lhs,
|
|
const poisson_distribution& rhs)
|
|
{
|
|
return lhs._mean == rhs._mean;
|
|
}
|
|
/** Returns true if the two distributions could produce different
|
|
sequences of values, given equal generators. */
|
|
friend bool operator!=(const poisson_distribution& lhs,
|
|
const poisson_distribution& rhs)
|
|
{
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
private:
|
|
|
|
/// @cond show_private
|
|
|
|
template<class CharT, class Traits>
|
|
void read(std::basic_istream<CharT, Traits>& is) {
|
|
param_type parm;
|
|
if(is >> parm) {
|
|
param(parm);
|
|
}
|
|
}
|
|
|
|
bool use_inversion() const
|
|
{
|
|
return _mean < 10;
|
|
}
|
|
|
|
static RealType log_factorial(IntType k)
|
|
{
|
|
BOOST_ASSERT(k >= 0);
|
|
BOOST_ASSERT(k < 10);
|
|
return detail::poisson_table<RealType>::value[k];
|
|
}
|
|
|
|
void init()
|
|
{
|
|
using std::sqrt;
|
|
using std::exp;
|
|
|
|
if(use_inversion()) {
|
|
_exp_mean = exp(-_mean);
|
|
} else {
|
|
_ptrd.smu = sqrt(_mean);
|
|
_ptrd.b = 0.931 + 2.53 * _ptrd.smu;
|
|
_ptrd.a = -0.059 + 0.02483 * _ptrd.b;
|
|
_ptrd.inv_alpha = 1.1239 + 1.1328 / (_ptrd.b - 3.4);
|
|
_ptrd.v_r = 0.9277 - 3.6224 / (_ptrd.b - 2);
|
|
}
|
|
}
|
|
|
|
template<class URNG>
|
|
IntType generate(URNG& urng) const
|
|
{
|
|
using std::floor;
|
|
using std::abs;
|
|
using std::log;
|
|
|
|
while(true) {
|
|
RealType u;
|
|
RealType v = uniform_01<RealType>()(urng);
|
|
if(v <= 0.86 * _ptrd.v_r) {
|
|
u = v / _ptrd.v_r - 0.43;
|
|
return static_cast<IntType>(floor(
|
|
(2*_ptrd.a/(0.5-abs(u)) + _ptrd.b)*u + _mean + 0.445));
|
|
}
|
|
|
|
if(v >= _ptrd.v_r) {
|
|
u = uniform_01<RealType>()(urng) - 0.5;
|
|
} else {
|
|
u = v/_ptrd.v_r - 0.93;
|
|
u = ((u < 0)? -0.5 : 0.5) - u;
|
|
v = uniform_01<RealType>()(urng) * _ptrd.v_r;
|
|
}
|
|
|
|
RealType us = 0.5 - abs(u);
|
|
if(us < 0.013 && v > us) {
|
|
continue;
|
|
}
|
|
|
|
RealType k = floor((2*_ptrd.a/us + _ptrd.b)*u+_mean+0.445);
|
|
v = v*_ptrd.inv_alpha/(_ptrd.a/(us*us) + _ptrd.b);
|
|
|
|
RealType log_sqrt_2pi = 0.91893853320467267;
|
|
|
|
if(k >= 10) {
|
|
if(log(v*_ptrd.smu) <= (k + 0.5)*log(_mean/k)
|
|
- _mean
|
|
- log_sqrt_2pi
|
|
+ k
|
|
- (1/12. - (1/360. - 1/(1260.*k*k))/(k*k))/k) {
|
|
return static_cast<IntType>(k);
|
|
}
|
|
} else if(k >= 0) {
|
|
if(log(v) <= k*log(_mean)
|
|
- _mean
|
|
- log_factorial(static_cast<IntType>(k))) {
|
|
return static_cast<IntType>(k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class URNG>
|
|
IntType invert(URNG& urng) const
|
|
{
|
|
RealType p = _exp_mean;
|
|
IntType x = 0;
|
|
RealType u = uniform_01<RealType>()(urng);
|
|
while(u > p) {
|
|
u = u - p;
|
|
++x;
|
|
p = _mean * p / x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
RealType _mean;
|
|
|
|
union {
|
|
// for ptrd
|
|
struct {
|
|
RealType v_r;
|
|
RealType a;
|
|
RealType b;
|
|
RealType smu;
|
|
RealType inv_alpha;
|
|
} _ptrd;
|
|
// for inversion
|
|
RealType _exp_mean;
|
|
};
|
|
|
|
/// @endcond
|
|
};
|
|
|
|
} // namespace random
|
|
|
|
using random::poisson_distribution;
|
|
|
|
} // namespace boost
|
|
|
|
#include <boost/random/detail/enable_warnings.hpp>
|
|
|
|
#endif // BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
|