WSJT-X/boost/units/quantity.hpp
Bill Somerville 4ebe6417a5 Squashed 'boost/' content from commit b4feb19f2
git-subtree-dir: boost
git-subtree-split: b4feb19f287ee92d87a9624b5d36b7cf46aeadeb
2018-06-09 21:48:32 +01:00

1255 lines
40 KiB
C++

// Boost.Units - A C++ library for zero-overhead dimensional analysis and
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2007-2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNITS_QUANTITY_HPP
#define BOOST_UNITS_QUANTITY_HPP
#include <algorithm>
#include <boost/config.hpp>
#include <boost/static_assert.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/units/conversion.hpp>
#include <boost/units/dimensionless_type.hpp>
#include <boost/units/homogeneous_system.hpp>
#include <boost/units/operators.hpp>
#include <boost/units/static_rational.hpp>
#include <boost/units/units_fwd.hpp>
#include <boost/units/detail/dimensionless_unit.hpp>
namespace boost {
namespace units {
namespace detail {
template<class T, class Enable = void>
struct is_base_unit : mpl::false_ {};
template<class T>
struct is_base_unit<T, typename T::boost_units_is_base_unit_type> : mpl::true_ {};
template<class Source, class Destination>
struct is_narrowing_conversion_impl : mpl::bool_<(sizeof(Source) > sizeof(Destination))> {};
template<class Source, class Destination>
struct is_non_narrowing_conversion :
mpl::and_<
boost::is_convertible<Source, Destination>,
mpl::not_<
mpl::and_<
boost::is_arithmetic<Source>,
boost::is_arithmetic<Destination>,
mpl::or_<
mpl::and_<
is_integral<Destination>,
mpl::not_<is_integral<Source> >
>,
is_narrowing_conversion_impl<Source, Destination>
>
>
>
>
{};
template<>
struct is_non_narrowing_conversion<long double, double> : mpl::false_ {};
// msvc 7.1 needs extra disambiguation
template<class T, class U>
struct disable_if_is_same
{
typedef void type;
};
template<class T>
struct disable_if_is_same<T, T> {};
}
/// class declaration
template<class Unit,class Y>
class quantity
{
// base units are not the same as units.
BOOST_MPL_ASSERT_NOT((detail::is_base_unit<Unit>));
enum { force_instantiation_of_unit = sizeof(Unit) };
typedef void (quantity::*unspecified_null_pointer_constant_type)(int*******);
public:
typedef quantity<Unit,Y> this_type;
typedef Y value_type;
typedef Unit unit_type;
quantity() : val_()
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
quantity(unspecified_null_pointer_constant_type) : val_()
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
quantity(const this_type& source) : val_(source.val_)
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
// Need to make sure that the destructor of
// Unit which contains the checking is instantiated,
// on sun.
#ifdef __SUNPRO_CC
~quantity() {
unit_type force_unit_instantiation;
}
#endif
//~quantity() { }
this_type& operator=(const this_type& source)
{
val_ = source.val_;
return *this;
}
#ifndef BOOST_NO_SFINAE
/// implicit conversion between value types is allowed if allowed for value types themselves
template<class YY>
quantity(const quantity<Unit,YY>& source,
typename boost::enable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) :
val_(source.value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
/// implicit conversion between value types is not allowed if not allowed for value types themselves
template<class YY>
explicit quantity(const quantity<Unit,YY>& source,
typename boost::disable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) :
val_(static_cast<Y>(source.value()))
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
#else
/// implicit conversion between value types is allowed if allowed for value types themselves
template<class YY>
quantity(const quantity<Unit,YY>& source) :
val_(source.value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
BOOST_STATIC_ASSERT((boost::is_convertible<YY, Y>::value == true));
}
#endif
/// implicit assignment between value types is allowed if allowed for value types themselves
template<class YY>
this_type& operator=(const quantity<Unit,YY>& source)
{
BOOST_STATIC_ASSERT((boost::is_convertible<YY, Y>::value == true));
*this = this_type(source);
return *this;
}
#ifndef BOOST_NO_SFINAE
/// explicit conversion between different unit systems is allowed if implicit conversion is disallowed
template<class Unit2,class YY>
explicit
quantity(const quantity<Unit2,YY>& source,
typename boost::disable_if<
mpl::and_<
//is_implicitly_convertible should be undefined when the
//units are not convertible at all
typename is_implicitly_convertible<Unit2,Unit>::type,
detail::is_non_narrowing_conversion<YY, Y>
>,
typename detail::disable_if_is_same<Unit, Unit2>::type
>::type* = 0)
: val_(conversion_helper<quantity<Unit2,YY>,this_type>::convert(source).value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true));
}
/// implicit conversion between different unit systems is allowed if each fundamental dimension is implicitly convertible
template<class Unit2,class YY>
quantity(const quantity<Unit2,YY>& source,
typename boost::enable_if<
mpl::and_<
typename is_implicitly_convertible<Unit2,Unit>::type,
detail::is_non_narrowing_conversion<YY, Y>
>,
typename detail::disable_if_is_same<Unit, Unit2>::type
>::type* = 0)
: val_(conversion_helper<quantity<Unit2,YY>,this_type>::convert(source).value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true));
}
#else
/// without SFINAE we can't distinguish between explicit and implicit conversions so
/// the conversion is always explicit
template<class Unit2,class YY>
explicit quantity(const quantity<Unit2,YY>& source)
: val_(conversion_helper<quantity<Unit2,YY>,this_type>::convert(source).value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true));
}
#endif
/// implicit assignment between different unit systems is allowed if each fundamental dimension is implicitly convertible
template<class Unit2,class YY>
this_type& operator=(const quantity<Unit2,YY>& source)
{
BOOST_STATIC_ASSERT((is_implicitly_convertible<Unit2,unit_type>::value == true));
BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true));
*this = this_type(source);
return *this;
}
const value_type& value() const { return val_; } ///< constant accessor to value
///< can add a quantity of the same type if add_typeof_helper<value_type,value_type>::type is convertible to value_type
template<class Unit2, class YY>
this_type& operator+=(const quantity<Unit2, YY>& source)
{
BOOST_STATIC_ASSERT((boost::is_same<typename add_typeof_helper<Unit, Unit2>::type, Unit>::value));
val_ += source.value();
return *this;
}
///< can subtract a quantity of the same type if subtract_typeof_helper<value_type,value_type>::type is convertible to value_type
template<class Unit2, class YY>
this_type& operator-=(const quantity<Unit2, YY>& source)
{
BOOST_STATIC_ASSERT((boost::is_same<typename subtract_typeof_helper<Unit, Unit2>::type, Unit>::value));
val_ -= source.value();
return *this;
}
template<class Unit2, class YY>
this_type& operator*=(const quantity<Unit2, YY>& source)
{
BOOST_STATIC_ASSERT((boost::is_same<typename multiply_typeof_helper<Unit, Unit2>::type, Unit>::value));
val_ *= source.value();
return *this;
}
template<class Unit2, class YY>
this_type& operator/=(const quantity<Unit2, YY>& source)
{
BOOST_STATIC_ASSERT((boost::is_same<typename divide_typeof_helper<Unit, Unit2>::type, Unit>::value));
val_ /= source.value();
return *this;
}
///< can multiply a quantity by a scalar value_type if multiply_typeof_helper<value_type,value_type>::type is convertible to value_type
this_type& operator*=(const value_type& source) { val_ *= source; return *this; }
///< can divide a quantity by a scalar value_type if divide_typeof_helper<value_type,value_type>::type is convertible to value_type
this_type& operator/=(const value_type& source) { val_ /= source; return *this; }
/// Construct quantity directly from @c value_type (potentially dangerous).
static this_type from_value(const value_type& val) { return this_type(val, 0); }
protected:
explicit quantity(const value_type& val, int) : val_(val) { }
private:
value_type val_;
};
/// Specialization for dimensionless quantities. Implicit conversions between
/// unit systems are allowed because all dimensionless quantities are equivalent.
/// Implicit construction and assignment from and conversion to @c value_type is
/// also allowed.
template<class System,class Y>
class quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System),Y>
{
public:
typedef quantity<unit<dimensionless_type,System>,Y> this_type;
typedef Y value_type;
typedef System system_type;
typedef dimensionless_type dimension_type;
typedef unit<dimension_type,system_type> unit_type;
quantity() : val_()
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
/// construction from raw @c value_type is allowed
quantity(value_type val) : val_(val)
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
quantity(const this_type& source) : val_(source.val_)
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
//~quantity() { }
this_type& operator=(const this_type& source)
{
val_ = source.val_;
return *this;
}
#ifndef BOOST_NO_SFINAE
/// implicit conversion between value types is allowed if allowed for value types themselves
template<class YY>
quantity(const quantity<unit<dimension_type,system_type>,YY>& source,
typename boost::enable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) :
val_(source.value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
/// implicit conversion between value types is not allowed if not allowed for value types themselves
template<class YY>
explicit quantity(const quantity<unit<dimension_type,system_type>,YY>& source,
typename boost::disable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) :
val_(static_cast<Y>(source.value()))
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
#else
/// implicit conversion between value types is allowed if allowed for value types themselves
template<class YY>
quantity(const quantity<unit<dimension_type,system_type>,YY>& source) :
val_(source.value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
BOOST_STATIC_ASSERT((boost::is_convertible<YY, Y>::value == true));
}
#endif
/// implicit assignment between value types is allowed if allowed for value types themselves
template<class YY>
this_type& operator=(const quantity<unit<dimension_type,system_type>,YY>& source)
{
BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true));
*this = this_type(source);
return *this;
}
#if 1
/// implicit conversion between different unit systems is allowed
template<class System2, class Y2>
quantity(const quantity<unit<dimensionless_type, System2>,Y2>& source,
#ifdef __SUNPRO_CC
typename boost::enable_if<
boost::mpl::and_<
detail::is_non_narrowing_conversion<Y2, Y>,
detail::is_dimensionless_system<System2>
>
>::type* = 0
#else
typename boost::enable_if<detail::is_non_narrowing_conversion<Y2, Y> >::type* = 0,
typename detail::disable_if_is_same<System, System2>::type* = 0,
typename boost::enable_if<detail::is_dimensionless_system<System2> >::type* = 0
#endif
) :
val_(source.value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
/// implicit conversion between different unit systems is allowed
template<class System2, class Y2>
explicit quantity(const quantity<unit<dimensionless_type, System2>,Y2>& source,
#ifdef __SUNPRO_CC
typename boost::enable_if<
boost::mpl::and_<
boost::mpl::not_<detail::is_non_narrowing_conversion<Y2, Y> >,
detail::is_dimensionless_system<System2>
>
>::type* = 0
#else
typename boost::disable_if<detail::is_non_narrowing_conversion<Y2, Y> >::type* = 0,
typename detail::disable_if_is_same<System, System2>::type* = 0,
typename boost::enable_if<detail::is_dimensionless_system<System2> >::type* = 0
#endif
) :
val_(static_cast<Y>(source.value()))
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
#else
/// implicit conversion between different unit systems is allowed
template<class System2, class Y2>
quantity(const quantity<unit<dimensionless_type,homogeneous_system<System2> >,Y2>& source) :
val_(source.value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
BOOST_STATIC_ASSERT((boost::is_convertible<Y2, Y>::value == true));
}
#endif
/// conversion between different unit systems is explicit when
/// the units are not equivalent.
template<class System2, class Y2>
explicit quantity(const quantity<unit<dimensionless_type, System2>,Y2>& source,
typename boost::disable_if<detail::is_dimensionless_system<System2> >::type* = 0) :
val_(conversion_helper<quantity<unit<dimensionless_type, System2>,Y2>, this_type>::convert(source).value())
{
BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y);
}
#ifndef __SUNPRO_CC
/// implicit assignment between different unit systems is allowed
template<class System2>
this_type& operator=(const quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System2),Y>& source)
{
*this = this_type(source);
return *this;
}
#endif
/// implicit conversion to @c value_type is allowed
operator value_type() const { return val_; }
const value_type& value() const { return val_; } ///< constant accessor to value
///< can add a quantity of the same type if add_typeof_helper<value_type,value_type>::type is convertible to value_type
this_type& operator+=(const this_type& source) { val_ += source.val_; return *this; }
///< can subtract a quantity of the same type if subtract_typeof_helper<value_type,value_type>::type is convertible to value_type
this_type& operator-=(const this_type& source) { val_ -= source.val_; return *this; }
///< can multiply a quantity by a scalar value_type if multiply_typeof_helper<value_type,value_type>::type is convertible to value_type
this_type& operator*=(const value_type& val) { val_ *= val; return *this; }
///< can divide a quantity by a scalar value_type if divide_typeof_helper<value_type,value_type>::type is convertible to value_type
this_type& operator/=(const value_type& val) { val_ /= val; return *this; }
/// Construct quantity directly from @c value_type.
static this_type from_value(const value_type& val) { return this_type(val); }
private:
value_type val_;
};
#ifdef BOOST_MSVC
// HACK: For some obscure reason msvc 8.0 needs these specializations
template<class System, class T>
class quantity<unit<int, System>, T> {};
template<class T>
class quantity<int, T> {};
#endif
} // namespace units
} // namespace boost
#if BOOST_UNITS_HAS_BOOST_TYPEOF
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::quantity, 2)
#endif
namespace boost {
namespace units {
namespace detail {
/// helper class for quantity_cast
template<class X,class Y> struct quantity_cast_helper;
/// specialization for casting to the value type
template<class Y,class X,class Unit>
struct quantity_cast_helper<Y,quantity<Unit,X> >
{
typedef Y type;
type operator()(quantity<Unit,X>& source) { return const_cast<X&>(source.value()); }
};
/// specialization for casting to the value type
template<class Y,class X,class Unit>
struct quantity_cast_helper<Y,const quantity<Unit,X> >
{
typedef Y type;
type operator()(const quantity<Unit,X>& source) { return source.value(); }
};
} // namespace detail
/// quantity_cast provides mutating access to underlying quantity value_type
template<class X,class Y>
inline
X
quantity_cast(Y& source)
{
detail::quantity_cast_helper<X,Y> qch;
return qch(source);
}
template<class X,class Y>
inline
X
quantity_cast(const Y& source)
{
detail::quantity_cast_helper<X,const Y> qch;
return qch(source);
}
/// swap quantities
template<class Unit,class Y>
inline void swap(quantity<Unit,Y>& lhs, quantity<Unit,Y>& rhs)
{
using std::swap;
swap(quantity_cast<Y&>(lhs),quantity_cast<Y&>(rhs));
}
/// specialize unary plus typeof helper
/// INTERNAL ONLY
template<class Unit,class Y>
struct unary_plus_typeof_helper< quantity<Unit,Y> >
{
typedef typename unary_plus_typeof_helper<Y>::type value_type;
typedef typename unary_plus_typeof_helper<Unit>::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// specialize unary minus typeof helper
/// INTERNAL ONLY
template<class Unit,class Y>
struct unary_minus_typeof_helper< quantity<Unit,Y> >
{
typedef typename unary_minus_typeof_helper<Y>::type value_type;
typedef typename unary_minus_typeof_helper<Unit>::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// specialize add typeof helper
/// INTERNAL ONLY
template<class Unit1,
class Unit2,
class X,
class Y>
struct add_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >
{
typedef typename add_typeof_helper<X,Y>::type value_type;
typedef typename add_typeof_helper<Unit1,Unit2>::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// for sun CC we need to invoke SFINAE at
/// the top level, otherwise it will silently
/// return int.
template<class Dim1, class System1,
class Dim2, class System2,
class X,
class Y>
struct add_typeof_helper< quantity<unit<Dim1, System1>,X>,quantity<unit<Dim2, System2>,Y> >
{
};
template<class Dim,
class System,
class X,
class Y>
struct add_typeof_helper< quantity<unit<Dim, System>,X>,quantity<unit<Dim, System>,Y> >
{
typedef typename add_typeof_helper<X,Y>::type value_type;
typedef unit<Dim, System> unit_type;
typedef quantity<unit_type,value_type> type;
};
/// specialize subtract typeof helper
/// INTERNAL ONLY
template<class Unit1,
class Unit2,
class X,
class Y>
struct subtract_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >
{
typedef typename subtract_typeof_helper<X,Y>::type value_type;
typedef typename subtract_typeof_helper<Unit1,Unit2>::type unit_type;
typedef quantity<unit_type,value_type> type;
};
// Force adding different units to fail on sun.
template<class Dim1, class System1,
class Dim2, class System2,
class X,
class Y>
struct subtract_typeof_helper< quantity<unit<Dim1, System1>,X>,quantity<unit<Dim2, System2>,Y> >
{
};
template<class Dim,
class System,
class X,
class Y>
struct subtract_typeof_helper< quantity<unit<Dim, System>,X>,quantity<unit<Dim, System>,Y> >
{
typedef typename subtract_typeof_helper<X,Y>::type value_type;
typedef unit<Dim, System> unit_type;
typedef quantity<unit_type,value_type> type;
};
/// scalar times unit typeof helper
/// INTERNAL ONLY
template<class System,
class Dim,
class X>
struct multiply_typeof_helper< X,unit<Dim,System> >
{
typedef X value_type;
typedef unit<Dim,System> unit_type;
typedef quantity<unit_type,value_type> type;
};
/// unit times scalar typeof helper
/// INTERNAL ONLY
template<class System,
class Dim,
class X>
struct multiply_typeof_helper< unit<Dim,System>,X >
{
typedef X value_type;
typedef unit<Dim,System> unit_type;
typedef quantity<unit_type,value_type> type;
};
/// scalar times quantity typeof helper
/// INTERNAL ONLY
template<class Unit,
class X,
class Y>
struct multiply_typeof_helper< X,quantity<Unit,Y> >
{
typedef typename multiply_typeof_helper<X,Y>::type value_type;
typedef Unit unit_type;
typedef quantity<unit_type,value_type> type;
};
/// disambiguate
/// INTERNAL ONLY
template<class Unit,
class Y>
struct multiply_typeof_helper< one,quantity<Unit,Y> >
{
typedef quantity<Unit,Y> type;
};
/// quantity times scalar typeof helper
/// INTERNAL ONLY
template<class Unit,
class X,
class Y>
struct multiply_typeof_helper< quantity<Unit,X>,Y >
{
typedef typename multiply_typeof_helper<X,Y>::type value_type;
typedef Unit unit_type;
typedef quantity<unit_type,value_type> type;
};
/// disambiguate
/// INTERNAL ONLY
template<class Unit,
class X>
struct multiply_typeof_helper< quantity<Unit,X>,one >
{
typedef quantity<Unit,X> type;
};
/// unit times quantity typeof helper
/// INTERNAL ONLY
template<class Unit,
class System,
class Dim,
class X>
struct multiply_typeof_helper< unit<Dim,System>,quantity<Unit,X> >
{
typedef X value_type;
typedef typename multiply_typeof_helper< unit<Dim,System>,Unit >::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// quantity times unit typeof helper
/// INTERNAL ONLY
template<class Unit,
class System,
class Dim,
class X>
struct multiply_typeof_helper< quantity<Unit,X>,unit<Dim,System> >
{
typedef X value_type;
typedef typename multiply_typeof_helper< Unit,unit<Dim,System> >::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// quantity times quantity typeof helper
/// INTERNAL ONLY
template<class Unit1,
class Unit2,
class X,
class Y>
struct multiply_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >
{
typedef typename multiply_typeof_helper<X,Y>::type value_type;
typedef typename multiply_typeof_helper<Unit1,Unit2>::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// scalar divided by unit typeof helper
/// INTERNAL ONLY
template<class System,
class Dim,
class X>
struct divide_typeof_helper< X,unit<Dim,System> >
{
typedef X value_type;
typedef typename power_typeof_helper< unit<Dim,System>,static_rational<-1> >::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// unit divided by scalar typeof helper
/// INTERNAL ONLY
template<class System,
class Dim,
class X>
struct divide_typeof_helper< unit<Dim,System>,X >
{
typedef typename divide_typeof_helper<X,X>::type value_type;
typedef unit<Dim,System> unit_type;
typedef quantity<unit_type,value_type> type;
};
/// scalar divided by quantity typeof helper
/// INTERNAL ONLY
template<class Unit,
class X,
class Y>
struct divide_typeof_helper< X,quantity<Unit,Y> >
{
typedef typename divide_typeof_helper<X,Y>::type value_type;
typedef typename power_typeof_helper< Unit,static_rational<-1> >::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// disambiguate
/// INTERNAL ONLY
template<class Unit,
class Y>
struct divide_typeof_helper< one,quantity<Unit,Y> >
{
typedef quantity<Unit,Y> type;
};
/// quantity divided by scalar typeof helper
/// INTERNAL ONLY
template<class Unit,
class X,
class Y>
struct divide_typeof_helper< quantity<Unit,X>,Y >
{
typedef typename divide_typeof_helper<X,Y>::type value_type;
typedef Unit unit_type;
typedef quantity<unit_type,value_type> type;
};
/// disambiguate
/// INTERNAL ONLY
template<class Unit,
class X>
struct divide_typeof_helper< quantity<Unit,X>,one >
{
typedef quantity<Unit,X> type;
};
/// unit divided by quantity typeof helper
/// INTERNAL ONLY
template<class Unit,
class System,
class Dim,
class X>
struct divide_typeof_helper< unit<Dim,System>,quantity<Unit,X> >
{
typedef typename divide_typeof_helper<X,X>::type value_type;
typedef typename divide_typeof_helper< unit<Dim,System>,Unit >::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// quantity divided by unit typeof helper
/// INTERNAL ONLY
template<class Unit,
class System,
class Dim,
class X>
struct divide_typeof_helper< quantity<Unit,X>,unit<Dim,System> >
{
typedef X value_type;
typedef typename divide_typeof_helper< Unit,unit<Dim,System> >::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// quantity divided by quantity typeof helper
/// INTERNAL ONLY
template<class Unit1,
class Unit2,
class X,
class Y>
struct divide_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >
{
typedef typename divide_typeof_helper<X,Y>::type value_type;
typedef typename divide_typeof_helper<Unit1,Unit2>::type unit_type;
typedef quantity<unit_type,value_type> type;
};
/// specialize power typeof helper
/// INTERNAL ONLY
template<class Unit,long N,long D,class Y>
struct power_typeof_helper< quantity<Unit,Y>,static_rational<N,D> >
{
typedef typename power_typeof_helper<Y,static_rational<N,D> >::type value_type;
typedef typename power_typeof_helper<Unit,static_rational<N,D> >::type unit_type;
typedef quantity<unit_type,value_type> type;
static type value(const quantity<Unit,Y>& x)
{
return type::from_value(power_typeof_helper<Y,static_rational<N,D> >::value(x.value()));
}
};
/// specialize root typeof helper
/// INTERNAL ONLY
template<class Unit,long N,long D,class Y>
struct root_typeof_helper< quantity<Unit,Y>,static_rational<N,D> >
{
typedef typename root_typeof_helper<Y,static_rational<N,D> >::type value_type;
typedef typename root_typeof_helper<Unit,static_rational<N,D> >::type unit_type;
typedef quantity<unit_type,value_type> type;
static type value(const quantity<Unit,Y>& x)
{
return type::from_value(root_typeof_helper<Y,static_rational<N,D> >::value(x.value()));
}
};
/// runtime unit times scalar
/// INTERNAL ONLY
template<class System,
class Dim,
class Y>
inline
typename multiply_typeof_helper< unit<Dim,System>,Y >::type
operator*(const unit<Dim,System>&,const Y& rhs)
{
typedef typename multiply_typeof_helper< unit<Dim,System>,Y >::type type;
return type::from_value(rhs);
}
/// runtime unit divided by scalar
template<class System,
class Dim,
class Y>
inline
typename divide_typeof_helper< unit<Dim,System>,Y >::type
operator/(const unit<Dim,System>&,const Y& rhs)
{
typedef typename divide_typeof_helper<unit<Dim,System>,Y>::type type;
return type::from_value(Y(1)/rhs);
}
/// runtime scalar times unit
template<class System,
class Dim,
class Y>
inline
typename multiply_typeof_helper< Y,unit<Dim,System> >::type
operator*(const Y& lhs,const unit<Dim,System>&)
{
typedef typename multiply_typeof_helper< Y,unit<Dim,System> >::type type;
return type::from_value(lhs);
}
/// runtime scalar divided by unit
template<class System,
class Dim,
class Y>
inline
typename divide_typeof_helper< Y,unit<Dim,System> >::type
operator/(const Y& lhs,const unit<Dim,System>&)
{
typedef typename divide_typeof_helper< Y,unit<Dim,System> >::type type;
return type::from_value(lhs);
}
///// runtime quantity times scalar
//template<class Unit,
// class X,
// class Y>
//inline
//typename multiply_typeof_helper< quantity<Unit,X>,Y >::type
//operator*(const quantity<Unit,X>& lhs,const Y& rhs)
//{
// typedef typename multiply_typeof_helper< quantity<Unit,X>,Y >::type type;
//
// return type::from_value(lhs.value()*rhs);
//}
//
///// runtime scalar times quantity
//template<class Unit,
// class X,
// class Y>
//inline
//typename multiply_typeof_helper< X,quantity<Unit,Y> >::type
//operator*(const X& lhs,const quantity<Unit,Y>& rhs)
//{
// typedef typename multiply_typeof_helper< X,quantity<Unit,Y> >::type type;
//
// return type::from_value(lhs*rhs.value());
//}
/// runtime quantity times scalar
template<class Unit,
class X>
inline
typename multiply_typeof_helper< quantity<Unit,X>,X >::type
operator*(const quantity<Unit,X>& lhs,const X& rhs)
{
typedef typename multiply_typeof_helper< quantity<Unit,X>,X >::type type;
return type::from_value(lhs.value()*rhs);
}
/// runtime scalar times quantity
template<class Unit,
class X>
inline
typename multiply_typeof_helper< X,quantity<Unit,X> >::type
operator*(const X& lhs,const quantity<Unit,X>& rhs)
{
typedef typename multiply_typeof_helper< X,quantity<Unit,X> >::type type;
return type::from_value(lhs*rhs.value());
}
///// runtime quantity divided by scalar
//template<class Unit,
// class X,
// class Y>
//inline
//typename divide_typeof_helper< quantity<Unit,X>,Y >::type
//operator/(const quantity<Unit,X>& lhs,const Y& rhs)
//{
// typedef typename divide_typeof_helper< quantity<Unit,X>,Y >::type type;
//
// return type::from_value(lhs.value()/rhs);
//}
//
///// runtime scalar divided by quantity
//template<class Unit,
// class X,
// class Y>
//inline
//typename divide_typeof_helper< X,quantity<Unit,Y> >::type
//operator/(const X& lhs,const quantity<Unit,Y>& rhs)
//{
// typedef typename divide_typeof_helper< X,quantity<Unit,Y> >::type type;
//
// return type::from_value(lhs/rhs.value());
//}
/// runtime quantity divided by scalar
template<class Unit,
class X>
inline
typename divide_typeof_helper< quantity<Unit,X>,X >::type
operator/(const quantity<Unit,X>& lhs,const X& rhs)
{
typedef typename divide_typeof_helper< quantity<Unit,X>,X >::type type;
return type::from_value(lhs.value()/rhs);
}
/// runtime scalar divided by quantity
template<class Unit,
class X>
inline
typename divide_typeof_helper< X,quantity<Unit,X> >::type
operator/(const X& lhs,const quantity<Unit,X>& rhs)
{
typedef typename divide_typeof_helper< X,quantity<Unit,X> >::type type;
return type::from_value(lhs/rhs.value());
}
/// runtime unit times quantity
template<class System1,
class Dim1,
class Unit2,
class Y>
inline
typename multiply_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type
operator*(const unit<Dim1,System1>&,const quantity<Unit2,Y>& rhs)
{
typedef typename multiply_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type type;
return type::from_value(rhs.value());
}
/// runtime unit divided by quantity
template<class System1,
class Dim1,
class Unit2,
class Y>
inline
typename divide_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type
operator/(const unit<Dim1,System1>&,const quantity<Unit2,Y>& rhs)
{
typedef typename divide_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type type;
return type::from_value(Y(1)/rhs.value());
}
/// runtime quantity times unit
template<class Unit1,
class System2,
class Dim2,
class Y>
inline
typename multiply_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type
operator*(const quantity<Unit1,Y>& lhs,const unit<Dim2,System2>&)
{
typedef typename multiply_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type type;
return type::from_value(lhs.value());
}
/// runtime quantity divided by unit
template<class Unit1,
class System2,
class Dim2,
class Y>
inline
typename divide_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type
operator/(const quantity<Unit1,Y>& lhs,const unit<Dim2,System2>&)
{
typedef typename divide_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type type;
return type::from_value(lhs.value());
}
/// runtime unary plus quantity
template<class Unit,class Y>
typename unary_plus_typeof_helper< quantity<Unit,Y> >::type
operator+(const quantity<Unit,Y>& val)
{
typedef typename unary_plus_typeof_helper< quantity<Unit,Y> >::type type;
return type::from_value(+val.value());
}
/// runtime unary minus quantity
template<class Unit,class Y>
typename unary_minus_typeof_helper< quantity<Unit,Y> >::type
operator-(const quantity<Unit,Y>& val)
{
typedef typename unary_minus_typeof_helper< quantity<Unit,Y> >::type type;
return type::from_value(-val.value());
}
/// runtime quantity plus quantity
template<class Unit1,
class Unit2,
class X,
class Y>
inline
typename add_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type
operator+(const quantity<Unit1,X>& lhs,
const quantity<Unit2,Y>& rhs)
{
typedef typename add_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type type;
return type::from_value(lhs.value()+rhs.value());
}
/// runtime quantity minus quantity
template<class Unit1,
class Unit2,
class X,
class Y>
inline
typename subtract_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type
operator-(const quantity<Unit1,X>& lhs,
const quantity<Unit2,Y>& rhs)
{
typedef typename subtract_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type type;
return type::from_value(lhs.value()-rhs.value());
}
/// runtime quantity times quantity
template<class Unit1,
class Unit2,
class X,
class Y>
inline
typename multiply_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type
operator*(const quantity<Unit1,X>& lhs,
const quantity<Unit2,Y>& rhs)
{
typedef typename multiply_typeof_helper< quantity<Unit1,X>,
quantity<Unit2,Y> >::type type;
return type::from_value(lhs.value()*rhs.value());
}
/// runtime quantity divided by quantity
template<class Unit1,
class Unit2,
class X,
class Y>
inline
typename divide_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type
operator/(const quantity<Unit1,X>& lhs,
const quantity<Unit2,Y>& rhs)
{
typedef typename divide_typeof_helper< quantity<Unit1,X>,
quantity<Unit2,Y> >::type type;
return type::from_value(lhs.value()/rhs.value());
}
/// runtime operator==
template<class Unit,
class X,
class Y>
inline
bool
operator==(const quantity<Unit,X>& val1,
const quantity<Unit,Y>& val2)
{
return val1.value() == val2.value();
}
/// runtime operator!=
template<class Unit,
class X,
class Y>
inline
bool
operator!=(const quantity<Unit,X>& val1,
const quantity<Unit,Y>& val2)
{
return val1.value() != val2.value();
}
/// runtime operator<
template<class Unit,
class X,
class Y>
inline
bool
operator<(const quantity<Unit,X>& val1,
const quantity<Unit,Y>& val2)
{
return val1.value() < val2.value();
}
/// runtime operator<=
template<class Unit,
class X,
class Y>
inline
bool
operator<=(const quantity<Unit,X>& val1,
const quantity<Unit,Y>& val2)
{
return val1.value() <= val2.value();
}
/// runtime operator>
template<class Unit,
class X,
class Y>
inline
bool
operator>(const quantity<Unit,X>& val1,
const quantity<Unit,Y>& val2)
{
return val1.value() > val2.value();
}
/// runtime operator>=
template<class Unit,
class X,
class Y>
inline
bool
operator>=(const quantity<Unit,X>& val1,
const quantity<Unit,Y>& val2)
{
return val1.value() >= val2.value();
}
} // namespace units
} // namespace boost
#endif // BOOST_UNITS_QUANTITY_HPP