mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-22 12:23:37 -05:00
e25dd201a3
1. Change to rectangular FFT window for 2D sync spectrum (ss). 2. Move 2D sync spectrum array to common block. 3. Change to quarter-symbol steps for the ss array. 4. Allow up to 4 decoding passes. 5. Wire up Fast/Normal/Deep for 2, 3, or 4 decoding passes. 6. Make minsmo=0 (instead of 1) for minimally spread JT65B/C signals. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@8178 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
214 lines
6.0 KiB
C
214 lines
6.0 KiB
C
/*
|
|
ftrsd2.c
|
|
|
|
A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
|
|
|
|
This decoding scheme is built around Phil Karn's Berlekamp-Massey
|
|
errors and erasures decoder. The approach is inspired by a number of
|
|
publications, including the stochastic Chase decoder described
|
|
in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
|
|
IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
|
|
"Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
|
|
and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
|
|
|
|
Steve Franke K9AN and Joe Taylor K1JT
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <time.h>
|
|
#include <string.h>
|
|
#include "rs2.h"
|
|
|
|
static void *rs;
|
|
void getpp_(int workdat[], float *pp);
|
|
|
|
void ftrsd2_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[],
|
|
int* ntrials0, int correct[], int param[], int ntry[])
|
|
{
|
|
int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
|
|
int workdat[63];
|
|
int indexes[63];
|
|
int era_pos[51];
|
|
int i, j, numera, nerr, nn=63;
|
|
int ntrials = *ntrials0;
|
|
int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768;
|
|
int ntotal=0,ntotal_min=32768,ncandidates;
|
|
int nera_best=0;
|
|
float pp,pp1,pp2;
|
|
static unsigned int nseed;
|
|
|
|
// Power-percentage symbol metrics - composite gnnf/hf
|
|
int perr[8][8] = {
|
|
{ 4, 9, 11, 13, 14, 14, 15, 15},
|
|
{ 2, 20, 20, 30, 40, 50, 50, 50},
|
|
{ 7, 24, 27, 40, 50, 50, 50, 50},
|
|
{13, 25, 35, 46, 52, 70, 50, 50},
|
|
{17, 30, 42, 54, 55, 64, 71, 70},
|
|
{25, 39, 48, 57, 64, 66, 77, 77},
|
|
{32, 45, 54, 63, 66, 75, 78, 83},
|
|
{51, 58, 57, 66, 72, 77, 82, 86}};
|
|
|
|
|
|
// Initialize the KA9Q Reed-Solomon encoder/decoder
|
|
unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
|
|
rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
|
|
|
|
// Reverse the received symbol vectors for BM decoder
|
|
for (i=0; i<63; i++) {
|
|
rxdat[i]=mrsym[62-i];
|
|
rxprob[i]=mrprob[62-i];
|
|
rxdat2[i]=mr2sym[62-i];
|
|
rxprob2[i]=mr2prob[62-i];
|
|
}
|
|
|
|
// Sort rxprob to find indexes of the least reliable symbols
|
|
int k, pass, tmp, nsym=63;
|
|
int probs[63];
|
|
for (i=0; i<63; i++) {
|
|
indexes[i]=i;
|
|
probs[i]=rxprob[i];
|
|
}
|
|
for (pass = 1; pass <= nsym-1; pass++) {
|
|
for (k = 0; k < nsym - pass; k++) {
|
|
if( probs[k] < probs[k+1] ) {
|
|
tmp = probs[k];
|
|
probs[k] = probs[k+1];
|
|
probs[k+1] = tmp;
|
|
tmp = indexes[k];
|
|
indexes[k] = indexes[k+1];
|
|
indexes[k+1] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if we can decode using BM HDD, and calculate the syndrome vector.
|
|
memset(era_pos,0,51*sizeof(int));
|
|
numera=0;
|
|
memcpy(workdat,rxdat,sizeof(rxdat));
|
|
nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
|
|
if( nerr >= 0 ) {
|
|
// Hard-decision decoding succeeded. Save codeword and some parameters.
|
|
nhard=0;
|
|
for (i=0; i<63; i++) {
|
|
if( workdat[i] != rxdat[i] ) nhard=nhard+1;
|
|
}
|
|
memcpy(correct,workdat,63*sizeof(int));
|
|
param[0]=0;
|
|
param[1]=nhard;
|
|
param[2]=0;
|
|
param[3]=0;
|
|
param[4]=0;
|
|
param[5]=0;
|
|
param[7]=1000*1000;
|
|
ntry[0]=0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
Hard-decision decoding failed. Try the FT soft-decision method.
|
|
Generate random erasure-locator vectors and see if any of them
|
|
decode. This will generate a list of "candidate" codewords. The
|
|
soft distance between each candidate codeword and the received
|
|
word is estimated by finding the largest (pp1) and second-largest
|
|
(pp2) outputs from a synchronized filter-bank operating on the
|
|
symbol spectra, and using these to decide which candidate
|
|
codeword is "best".
|
|
*/
|
|
|
|
nseed=1; //Seed for random numbers
|
|
float ratio;
|
|
int thresh, nsum;
|
|
int thresh0[63];
|
|
ncandidates=0;
|
|
nsum=0;
|
|
int ii,jj;
|
|
for (i=0; i<nn; i++) {
|
|
nsum=nsum+rxprob[i];
|
|
j = indexes[62-i];
|
|
ratio = (float)rxprob2[j]/((float)rxprob[j]+0.01);
|
|
ii = 7.999*ratio;
|
|
jj = (62-i)/8;
|
|
thresh0[i] = 1.3*perr[ii][jj];
|
|
}
|
|
if(nsum<=0) return;
|
|
|
|
pp1=0.0;
|
|
pp2=0.0;
|
|
for (k=1; k<=ntrials; k++) {
|
|
memset(era_pos,0,51*sizeof(int));
|
|
memcpy(workdat,rxdat,sizeof(rxdat));
|
|
|
|
/*
|
|
Mark a subset of the symbols as erasures.
|
|
Run through the ranked symbols, starting with the worst, i=0.
|
|
NB: j is the symbol-vector index of the symbol with rank i.
|
|
*/
|
|
numera=0;
|
|
for (i=0; i<nn; i++) {
|
|
j = indexes[62-i];
|
|
thresh=thresh0[i];
|
|
long int ir;
|
|
|
|
// Generate a random number ir, 0 <= ir < 100 (see POSIX.1-2001 example).
|
|
nseed = nseed * 1103515245 + 12345;
|
|
ir = (unsigned)(nseed/65536) % 32768;
|
|
ir = (100*ir)/32768;
|
|
|
|
if((ir < thresh ) && numera < 51) {
|
|
era_pos[numera]=j;
|
|
numera=numera+1;
|
|
}
|
|
}
|
|
|
|
nerr=decode_rs_int(rs,workdat,era_pos,numera,0);
|
|
if( nerr >= 0 ) {
|
|
// We have a candidate codeword. Find its hard and soft distance from
|
|
// the received word. Also find pp1 and pp2 from the full array
|
|
// s3(64,63) of synchronized symbol spectra.
|
|
ncandidates=ncandidates+1;
|
|
nhard=0;
|
|
nsoft=0;
|
|
for (i=0; i<63; i++) {
|
|
if(workdat[i] != rxdat[i]) {
|
|
nhard=nhard+1;
|
|
if(workdat[i] != rxdat2[i]) {
|
|
nsoft=nsoft+rxprob[i];
|
|
}
|
|
}
|
|
}
|
|
nsoft=63*nsoft/nsum;
|
|
ntotal=nsoft+nhard;
|
|
|
|
getpp_(workdat,&pp);
|
|
if(pp>pp1) {
|
|
pp2=pp1;
|
|
pp1=pp;
|
|
nsoft_min=nsoft;
|
|
nhard_min=nhard;
|
|
ntotal_min=ntotal;
|
|
memcpy(correct,workdat,63*sizeof(int));
|
|
nera_best=numera;
|
|
ntry[0]=k;
|
|
} else {
|
|
if(pp>pp2 && pp!=pp1) pp2=pp;
|
|
}
|
|
if(nhard_min <= 41 && ntotal_min <= 71) break;
|
|
}
|
|
if(k == ntrials) ntry[0]=k;
|
|
}
|
|
|
|
param[0]=ncandidates;
|
|
param[1]=nhard_min;
|
|
param[2]=nsoft_min;
|
|
param[3]=nera_best;
|
|
param[4]=1000.0*pp2/pp1;
|
|
param[5]=ntotal_min;
|
|
param[6]=ntry[0];
|
|
param[7]=1000.0*pp2;
|
|
param[8]=1000.0*pp1;
|
|
if(param[0]==0) param[2]=-1;
|
|
return;
|
|
}
|