mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-10-31 23:57:10 -04:00
280c8344cd
Preparation for merging with the wsjtx project repository.
515 lines
15 KiB
C
515 lines
15 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#define RADS 0.0174532925199433
|
|
#define DEGS 57.2957795130823
|
|
#define TPI 6.28318530717959
|
|
#define PI 3.1415927
|
|
|
|
/* ratio of earth radius to astronomical unit */
|
|
#define ER_OVER_AU 0.0000426352325194252
|
|
|
|
/* all prototypes here */
|
|
|
|
double getcoord(int coord);
|
|
void getargs(int argc, char *argv[], int *y, int *m, double *tz, double *glong, double *glat);
|
|
double range(double y);
|
|
double rangerad(double y);
|
|
double days(int y, int m, int dn, double hour);
|
|
double days_(int *y, int *m, int *dn, double *hour);
|
|
void moonpos(double, double *, double *, double *);
|
|
void sunpos(double , double *, double *, double *);
|
|
double moontransit(int y, int m, int d, double timezone, double glat, double glong, int *nt);
|
|
double atan22(double y, double x);
|
|
double epsilon(double d);
|
|
void equatorial(double d, double *lon, double *lat, double *r);
|
|
void ecliptic(double d, double *lon, double *lat, double *r);
|
|
double gst(double d);
|
|
void topo(double lst, double glat, double *alp, double *dec, double *r);
|
|
double alt(double glat, double ha, double dec);
|
|
void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p);
|
|
void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill);
|
|
int daysinmonth(int y, int m);
|
|
int isleap(int y);
|
|
void tmoonsub_(double *day, double *glat, double *glong, double *moonalt,
|
|
double *mrv, double *l, double *b, double *paxis);
|
|
|
|
static const char
|
|
*usage = " Usage: tmoon date[yyyymm] timz[+/-h.hh] long[+/-dddmm] lat[+/-ddmm]\n"
|
|
"example: tmoon 200009 0 -00155 5230\n";
|
|
|
|
/*
|
|
getargs() gets the arguments from the command line, does some basic error
|
|
checking, and converts arguments into numerical form. Arguments are passed
|
|
back in pointers. Error messages print to stderr so re-direction of output
|
|
to file won't leave users blind. Error checking prints list of all errors
|
|
in a command line before quitting.
|
|
*/
|
|
void getargs(int argc, char *argv[], int *y, int *m, double *tz,
|
|
double *glong, double *glat) {
|
|
|
|
int date, latitude, longitude;
|
|
int mflag = 0, yflag = 0, longflag = 0, latflag = 0, tzflag = 0;
|
|
int longminflag = 0, latminflag = 0, dflag = 0;
|
|
|
|
/* if not right number of arguments, then print example command line */
|
|
|
|
if (argc !=5) {
|
|
fprintf(stderr, usage);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
date = atoi(argv[1]);
|
|
*y = date / 100;
|
|
*m = date - *y * 100;
|
|
*tz = (double) atof(argv[2]);
|
|
longitude = atoi(argv[3]);
|
|
latitude = atoi(argv[4]);
|
|
*glong = RADS * getcoord(longitude);
|
|
*glat = RADS * getcoord(latitude);
|
|
|
|
/* set a flag for each error found */
|
|
|
|
if (*m > 12 || *m < 1) mflag = 1;
|
|
if (*y > 2500) yflag = 1;
|
|
if (date < 150001) dflag = 1;
|
|
if (fabs((float) *glong) > 180 * RADS) longflag = 1;
|
|
if (abs(longitude) % 100 > 59) longminflag = 1;
|
|
if (fabs((float) *glat) > 90 * RADS) latflag = 1;
|
|
if (abs(latitude) % 100 > 59) latminflag = 1;
|
|
if (fabs((float) *tz) > 12) tzflag = 1;
|
|
|
|
/* print all the errors found */
|
|
|
|
if (dflag == 1) {
|
|
fprintf(stderr, "date: dates must be in form yyyymm, gregorian, and later than 1500 AD\n");
|
|
}
|
|
if (yflag == 1) {
|
|
fprintf(stderr, "date: too far in future - accurate from 1500 to 2500\n");
|
|
}
|
|
if (mflag == 1) {
|
|
fprintf(stderr, "date: month must be in range 0 to 12, eg - August 2000 is entered as 200008\n");
|
|
}
|
|
if (tzflag == 1) {
|
|
fprintf(stderr, "timz: must be in range +/- 12 hours, eg -6 for Chicago\n");
|
|
}
|
|
if (longflag == 1) {
|
|
fprintf(stderr, "long: must be in range +/- 180 degrees\n");
|
|
}
|
|
if (longminflag == 1) {
|
|
fprintf(stderr, "long: last two digits are arcmin - max 59\n");
|
|
}
|
|
if (latflag == 1) {
|
|
fprintf(stderr, " lat: must be in range +/- 90 degrees\n");
|
|
}
|
|
if (latminflag == 1) {
|
|
fprintf(stderr, " lat: last two digits are arcmin - max 59\n");
|
|
}
|
|
|
|
/* quits if one or more flags set */
|
|
|
|
if (dflag + mflag + yflag + longflag + latflag + tzflag + longminflag + latminflag > 0) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
returns coordinates in decimal degrees given the
|
|
coord as a ddmm value stored in an integer.
|
|
*/
|
|
double getcoord(int coord) {
|
|
int west = 1;
|
|
double glg, deg;
|
|
if (coord < 0) west = -1;
|
|
glg = fabs((double) coord/100);
|
|
deg = floor(glg);
|
|
glg = west* (deg + (glg - deg)*100 / 60);
|
|
return(glg);
|
|
}
|
|
|
|
/*
|
|
days() takes the year, month, day in the month and decimal hours
|
|
in the day and returns the number of days since J2000.0.
|
|
Assumes Gregorian calendar.
|
|
*/
|
|
double days(int y, int m, int d, double h) {
|
|
int a, b;
|
|
double day;
|
|
|
|
/*
|
|
The lines below work from 1900 march to feb 2100
|
|
a = 367 * y - 7 * (y + (m + 9) / 12) / 4 + 275 * m / 9 + d;
|
|
day = (double)a - 730531.5 + hour / 24;
|
|
*/
|
|
|
|
/* These lines work for any Gregorian date since 0 AD */
|
|
if (m ==1 || m==2) {
|
|
m +=12;
|
|
y -= 1;
|
|
}
|
|
a = y / 100;
|
|
b = 2 - a + a/4;
|
|
day = floor(365.25*(y + 4716)) + floor(30.6001*(m + 1))
|
|
+ d + b - 1524.5 - 2451545 + h/24;
|
|
return(day);
|
|
}
|
|
double days_(int *y0, int *m0, int *d0, double *h0)
|
|
{
|
|
return days(*y0,*m0,*d0,*h0);
|
|
}
|
|
|
|
/*
|
|
Returns 1 if y a leap year, and 0 otherwise, according
|
|
to the Gregorian calendar
|
|
*/
|
|
int isleap(int y) {
|
|
int a = 0;
|
|
if(y % 4 == 0) a = 1;
|
|
if(y % 100 == 0) a = 0;
|
|
if(y % 400 == 0) a = 1;
|
|
return(a);
|
|
}
|
|
|
|
/*
|
|
Given the year and the month, function returns the
|
|
number of days in the month. Valid for Gregorian
|
|
calendar.
|
|
*/
|
|
int daysinmonth(int y, int m) {
|
|
int b = 31;
|
|
if(m == 2) {
|
|
if(isleap(y) == 1) b= 29;
|
|
else b = 28;
|
|
}
|
|
if(m == 4 || m == 6 || m == 9 || m == 11) b = 30;
|
|
return(b);
|
|
}
|
|
|
|
/*
|
|
moonpos() takes days from J2000.0 and returns ecliptic coordinates
|
|
of moon in the pointers. Note call by reference.
|
|
This function is within a couple of arcminutes most of the time,
|
|
and is truncated from the Meeus Ch45 series, themselves truncations of
|
|
ELP-2000. Returns moon distance in earth radii.
|
|
Terms have been written out explicitly rather than using the
|
|
table based method as only a small number of terms is
|
|
retained.
|
|
*/
|
|
void moonpos(double d, double *lambda, double *beta, double *rvec) {
|
|
double dl, dB, dR, L, D, M, M1, F, e, lm, bm, rm, t;
|
|
|
|
t = d / 36525;
|
|
|
|
L = range(218.3164591 + 481267.88134236 * t) * RADS;
|
|
D = range(297.8502042 + 445267.1115168 * t) * RADS;
|
|
M = range(357.5291092 + 35999.0502909 * t) * RADS;
|
|
M1 = range(134.9634114 + 477198.8676313 * t - .008997 * t * t) * RADS;
|
|
F = range(93.27209929999999 + 483202.0175273 * t - .0034029*t*t)*RADS;
|
|
e = 1 - .002516 * t;
|
|
|
|
dl = 6288774 * sin(M1);
|
|
dl += 1274027 * sin(2 * D - M1);
|
|
dl += 658314 * sin(2 * D);
|
|
dl += 213618 * sin(2 * M1);
|
|
dl -= e * 185116 * sin(M);
|
|
dl -= 114332 * sin(2 * F) ;
|
|
dl += 58793 * sin(2 * D - 2 * M1);
|
|
dl += e * 57066 * sin(2 * D - M - M1) ;
|
|
dl += 53322 * sin(2 * D + M1);
|
|
dl += e * 45758 * sin(2 * D - M);
|
|
dl -= e * 40923 * sin(M - M1);
|
|
dl -= 34720 * sin(D) ;
|
|
dl -= e * 30383 * sin(M + M1) ;
|
|
dl += 15327 * sin(2 * D - 2 * F) ;
|
|
dl -= 12528 * sin(M1 + 2 * F);
|
|
dl += 10980 * sin(M1 - 2 * F);
|
|
lm = rangerad(L + dl / 1000000 * RADS);
|
|
|
|
dB = 5128122 * sin(F);
|
|
dB += 280602 * sin(M1 + F);
|
|
dB += 277693 * sin(M1 - F);
|
|
dB += 173237 * sin(2 * D - F);
|
|
dB += 55413 * sin(2 * D - M1 + F);
|
|
dB += 46271 * sin(2 * D - M1 - F);
|
|
dB += 32573 * sin(2 * D + F);
|
|
dB += 17198 * sin(2 * M1 + F);
|
|
dB += 9266 * sin(2 * D + M1 - F);
|
|
dB += 8822 * sin(2 * M1 - F);
|
|
dB += e * 8216 * sin(2 * D - M - F);
|
|
dB += 4324 * sin(2 * D - 2 * M1 - F);
|
|
bm = dB / 1000000 * RADS;
|
|
|
|
dR = -20905355 * cos(M1);
|
|
dR -= 3699111 * cos(2 * D - M1);
|
|
dR -= 2955968 * cos(2 * D);
|
|
dR -= 569925 * cos(2 * M1);
|
|
dR += e * 48888 * cos(M);
|
|
dR -= 3149 * cos(2 * F);
|
|
dR += 246158 * cos(2 * D - 2 * M1);
|
|
dR -= e * 152138 * cos(2 * D - M - M1) ;
|
|
dR -= 170733 * cos(2 * D + M1);
|
|
dR -= e * 204586 * cos(2 * D - M);
|
|
dR -= e * 129620 * cos(M - M1);
|
|
dR += 108743 * cos(D);
|
|
dR += e * 104755 * cos(M + M1);
|
|
dR += 79661 * cos(M1 - 2 * F);
|
|
rm = 385000.56 + dR / 1000;
|
|
|
|
*lambda = lm;
|
|
*beta = bm;
|
|
/* distance to Moon must be in Earth radii */
|
|
*rvec = rm / 6378.14;
|
|
}
|
|
|
|
/*
|
|
topomoon() takes the local siderial time, the geographical
|
|
latitude of the observer, and pointers to the geocentric
|
|
equatorial coordinates. The function overwrites the geocentric
|
|
coordinates with topocentric coordinates on a simple spherical
|
|
earth model (no polar flattening). Expects Moon-Earth distance in
|
|
Earth radii. Formulas scavenged from Astronomical Almanac 'low
|
|
precision formulae for Moon position' page D46.
|
|
*/
|
|
|
|
void topo(double lst, double glat, double *alp, double *dec, double *r) {
|
|
double x, y, z, r1;
|
|
x = *r * cos(*dec) * cos(*alp) - cos(glat) * cos(lst);
|
|
y = *r * cos(*dec) * sin(*alp) - cos(glat) * sin(lst);
|
|
z = *r * sin(*dec) - sin(glat);
|
|
r1 = sqrt(x*x + y*y + z*z);
|
|
*alp = atan22(y, x);
|
|
*dec = asin(z / r1);
|
|
*r = r1;
|
|
}
|
|
|
|
/*
|
|
moontransit() takes date, the time zone and geographic longitude
|
|
of observer and returns the time (decimal hours) of lunar transit
|
|
on that day if there is one, and sets the notransit flag if there
|
|
isn't. See Explanatory Supplement to Astronomical Almanac
|
|
section 9.32 and 9.31 for the method.
|
|
*/
|
|
|
|
double moontransit(int y, int m, int d, double tz, double glat, double glong, int *notransit) {
|
|
double hm, ht, ht1, lon, lat, rv, dnew, lst;
|
|
int itcount;
|
|
|
|
ht1 = 180 * RADS;
|
|
ht = 0;
|
|
itcount = 0;
|
|
*notransit = 0;
|
|
do {
|
|
ht = ht1;
|
|
itcount++;
|
|
dnew = days(y, m, d, ht * DEGS/15) - tz/24;
|
|
lst = gst(dnew) + glong;
|
|
/* find the topocentric Moon ra (hence hour angle) and dec */
|
|
moonpos(dnew, &lon, &lat, &rv);
|
|
equatorial(dnew, &lon, &lat, &rv);
|
|
topo(lst, glat, &lon, &lat, &rv);
|
|
hm = rangerad(lst - lon);
|
|
ht1 = rangerad(ht - hm);
|
|
/* if no convergence, then no transit on that day */
|
|
if (itcount > 30) {
|
|
*notransit = 1;
|
|
break;
|
|
}
|
|
}
|
|
while (fabs(ht - ht1) > 0.04 * RADS);
|
|
return(ht1);
|
|
}
|
|
|
|
/*
|
|
Calculates the selenographic coordinates of either the sub Earth point
|
|
(optical libration) or the sub-solar point (selen. coords of centre of
|
|
bright hemisphere). Based on Meeus chapter 51 but neglects physical
|
|
libration and nutation, with some simplification of the formulas.
|
|
*/
|
|
void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p) {
|
|
double i, f, omega, w, y, x, a, t, eps;
|
|
t = day / 36525;
|
|
i = 1.54242 * RADS;
|
|
eps = epsilon(day);
|
|
f = range(93.2720993 + 483202.0175273 * t - .0034029 * t * t) * RADS;
|
|
omega = range(125.044555 - 1934.1361849 * t + .0020762 * t * t) * RADS;
|
|
w = lambda - omega;
|
|
y = sin(w) * cos(beta) * cos(i) - sin(beta) * sin(i);
|
|
x = cos(w) * cos(beta);
|
|
a = atan22(y, x);
|
|
*l = a - f;
|
|
|
|
/* kludge to catch cases of 'round the back' angles */
|
|
if (*l < -90 * RADS) *l += TPI;
|
|
if (*l > 90 * RADS) *l -= TPI;
|
|
*b = asin(-sin(w) * cos(beta) * sin(i) - sin(beta) * cos(i));
|
|
|
|
/* pa pole axis - not used for Sun stuff */
|
|
x = sin(i) * sin(omega);
|
|
y = sin(i) * cos(omega) * cos(eps) - cos(i) * sin(eps);
|
|
w = atan22(x, y);
|
|
*p = rangerad(asin(sqrt(x*x + y*y) * cos(alpha - w) / cos(*b)));
|
|
}
|
|
|
|
/*
|
|
Takes: days since J2000.0, eq coords Moon, ratio of moon to sun distance,
|
|
eq coords Sun
|
|
Returns: position angle of bright limb wrt NCP, percentage illumination
|
|
of Sun
|
|
*/
|
|
void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill) {
|
|
double x, y, phi, i;
|
|
y = cos(sdec) * sin(sra - lra);
|
|
x = sin(sdec) * cos(ldec) - cos(sdec) * sin(ldec) * cos (sra - lra);
|
|
*pabl = atan22(y, x);
|
|
phi = acos(sin(sdec) * sin(ldec) + cos(sdec) * cos(ldec) * cos(sra-lra));
|
|
i = atan22(sin(phi) , (dr - cos(phi)));
|
|
*ill = 0.5*(1 + cos(i));
|
|
}
|
|
|
|
/*
|
|
sunpos() takes days from J2000.0 and returns ecliptic longitude
|
|
of Sun in the pointers. Latitude is zero at this level of precision,
|
|
but pointer left in for consistency in number of arguments.
|
|
This function is within 0.01 degree (1 arcmin) almost all the time
|
|
for a century either side of J2000.0. This is from the 'low precision
|
|
fomulas for the Sun' from C24 of Astronomical Alamanac
|
|
*/
|
|
void sunpos(double d, double *lambda, double *beta, double *rvec) {
|
|
double L, g, ls, bs, rs;
|
|
|
|
L = range(280.461 + .9856474 * d) * RADS;
|
|
g = range(357.528 + .9856003 * d) * RADS;
|
|
ls = L + (1.915 * sin(g) + .02 * sin(2 * g)) * RADS;
|
|
bs = 0;
|
|
rs = 1.00014 - .01671 * cos(g) - .00014 * cos(2 * g);
|
|
*lambda = ls;
|
|
*beta = bs;
|
|
*rvec = rs;
|
|
}
|
|
|
|
/*
|
|
this routine returns the altitude given the days since J2000.0
|
|
the hour angle and declination of the object and the latitude
|
|
of the observer. Used to find the Sun's altitude to put a letter
|
|
code on the transit time, and to find the Moon's altitude at
|
|
transit just to make sure that the Moon is visible.
|
|
*/
|
|
double alt(double glat, double ha, double dec) {
|
|
return(asin(sin(dec) * sin(glat) + cos(dec) * cos(glat) * cos(ha)));
|
|
}
|
|
|
|
/* returns an angle in degrees in the range 0 to 360 */
|
|
double range(double x) {
|
|
double a, b;
|
|
b = x / 360;
|
|
a = 360 * (b - floor(b));
|
|
if (a < 0)
|
|
a = 360 + a;
|
|
return(a);
|
|
}
|
|
|
|
/* returns an angle in rads in the range 0 to two pi */
|
|
double rangerad(double x) {
|
|
double a, b;
|
|
b = x / TPI;
|
|
a = TPI * (b - floor(b));
|
|
if (a < 0)
|
|
a = TPI + a;
|
|
return(a);
|
|
}
|
|
|
|
/*
|
|
gets the atan2 function returning angles in the right
|
|
order and range
|
|
*/
|
|
double atan22(double y, double x) {
|
|
double a;
|
|
|
|
a = atan2(y, x);
|
|
if (a < 0) a += TPI;
|
|
return(a);
|
|
}
|
|
|
|
/*
|
|
returns mean obliquity of ecliptic in radians given days since
|
|
J2000.0.
|
|
*/
|
|
double epsilon(double d) {
|
|
double t = d/ 36525;
|
|
return((23.4392911111111 - (t* (46.8150 + 0.00059*t)/3600)) *RADS);
|
|
}
|
|
|
|
/*
|
|
replaces ecliptic coordinates with equatorial coordinates
|
|
note: call by reference destroys original values
|
|
R is unchanged.
|
|
*/
|
|
void equatorial(double d, double *lon, double *lat, double *r) {
|
|
double eps, ceps, seps, l, b;
|
|
|
|
l = *lon;
|
|
b = * lat;
|
|
eps = epsilon(d);
|
|
ceps = cos(eps);
|
|
seps = sin(eps);
|
|
*lon = atan22(sin(l)*ceps - tan(b)*seps, cos(l));
|
|
*lat = asin(sin(b)*ceps + cos(b)*seps*sin(l));
|
|
}
|
|
|
|
/*
|
|
replaces equatorial coordinates with ecliptic ones. Inverse
|
|
of above, but used to find topocentric ecliptic coords.
|
|
*/
|
|
void ecliptic(double d, double *lon, double *lat, double *r) {
|
|
double eps, ceps, seps, alp, dec;
|
|
alp = *lon;
|
|
dec = *lat;
|
|
eps = epsilon(d);
|
|
ceps = cos(eps);
|
|
seps = sin(eps);
|
|
*lon = atan22(sin(alp)*ceps + tan(dec)*seps, cos(alp));
|
|
*lat = asin(sin(dec)*ceps - cos(dec)*seps*sin(alp));
|
|
}
|
|
|
|
/*
|
|
returns the siderial time at greenwich meridian as
|
|
an angle in radians given the days since J2000.0
|
|
*/
|
|
double gst( double d) {
|
|
double t = d / 36525;
|
|
double theta;
|
|
theta = range(280.46061837 + 360.98564736629 * d + 0.000387933 * t * t);
|
|
return(theta * RADS);
|
|
}
|
|
|
|
void tmoonsub_(double *day, double *glat, double *glong, double *moonalt,
|
|
double *mrv, double *l, double *b, double *paxis)
|
|
{
|
|
double mlambda, mbeta;
|
|
double malpha, mdelta;
|
|
double lst, mhr;
|
|
double tlambda, tbeta, trv;
|
|
|
|
lst = gst(*day) + *glong;
|
|
|
|
/* find Moon topocentric coordinates for libration calculations */
|
|
|
|
moonpos(*day, &mlambda, &mbeta, mrv);
|
|
malpha = mlambda;
|
|
mdelta = mbeta;
|
|
equatorial(*day, &malpha, &mdelta, mrv);
|
|
topo(lst, *glat, &malpha, &mdelta, mrv);
|
|
mhr = rangerad(lst - malpha);
|
|
*moonalt = alt(*glat, mhr, mdelta);
|
|
|
|
/* Optical libration and Position angle of the Pole */
|
|
|
|
tlambda = malpha;
|
|
tbeta = mdelta;
|
|
trv = *mrv;
|
|
ecliptic(*day, &tlambda, &tbeta, &trv);
|
|
libration(*day, tlambda, tbeta, malpha, l, b, paxis);
|
|
}
|