mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 10:00:23 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			97 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <html>
 | |
| <head>
 | |
| <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
 | |
| <title>Overview</title>
 | |
| <link rel="stylesheet" href="../math.css" type="text/css">
 | |
| <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
 | |
| <link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
 | |
| <link rel="up" href="../quaternions.html" title="Chapter 9. Quaternions">
 | |
| <link rel="prev" href="../quaternions.html" title="Chapter 9. Quaternions">
 | |
| <link rel="next" href="quat_header.html" title="Header File">
 | |
| </head>
 | |
| <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
 | |
| <table cellpadding="2" width="100%"><tr>
 | |
| <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
 | |
| <td align="center"><a href="../../../../../index.html">Home</a></td>
 | |
| <td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
 | |
| <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
 | |
| <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
 | |
| <td align="center"><a href="../../../../../more/index.htm">More</a></td>
 | |
| </tr></table>
 | |
| <hr>
 | |
| <div class="spirit-nav">
 | |
| <a accesskey="p" href="../quaternions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
 | |
| </div>
 | |
| <div class="section">
 | |
| <div class="titlepage"><div><div><h2 class="title" style="clear: both">
 | |
| <a name="math_toolkit.quat_overview"></a><a class="link" href="quat_overview.html" title="Overview">Overview</a>
 | |
| </h2></div></div></div>
 | |
| <p>
 | |
|       Quaternions are a relative of complex numbers.
 | |
|     </p>
 | |
| <p>
 | |
|       Quaternions are in fact part of a small hierarchy of structures built upon
 | |
|       the real numbers, which comprise only the set of real numbers (traditionally
 | |
|       named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>), the set of
 | |
|       complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>),
 | |
|       the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>)
 | |
|       and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>),
 | |
|       which possess interesting mathematical properties (chief among which is the
 | |
|       fact that they are <span class="emphasis"><em>division algebras</em></span>, <span class="emphasis"><em>i.e.</em></span>
 | |
|       where the following property is true: if <span class="emphasis"><em><code class="literal">y</code></em></span>
 | |
|       is an element of that algebra and is <span class="bold"><strong>not equal to zero</strong></span>,
 | |
|       then <span class="emphasis"><em><code class="literal">yx = yx'</code></em></span>, where <span class="emphasis"><em><code class="literal">x</code></em></span>
 | |
|       and <span class="emphasis"><em><code class="literal">x'</code></em></span> denote elements of that algebra,
 | |
|       implies that <span class="emphasis"><em><code class="literal">x = x'</code></em></span>). Each member of
 | |
|       the hierarchy is a super-set of the former.
 | |
|     </p>
 | |
| <p>
 | |
|       One of the most important aspects of quaternions is that they provide an efficient
 | |
|       way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
 | |
|       (the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
 | |
|     </p>
 | |
| <p>
 | |
|       In practical terms, a quaternion is simply a quadruple of real numbers (α,β,γ,δ),
 | |
|       which we can write in the form <span class="emphasis"><em><code class="literal">q = α + βi + γj + δk</code></em></span>,
 | |
|       where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as for complex
 | |
|       numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and <span class="emphasis"><em><code class="literal">k</code></em></span>
 | |
|       are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
 | |
|     </p>
 | |
| <p>
 | |
|       An addition and a multiplication is defined on the set of quaternions, which
 | |
|       generalize their real and complex counterparts. The main novelty here is that
 | |
|       <span class="bold"><strong>the multiplication is not commutative</strong></span> (i.e.
 | |
|       there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">y</code></em></span>
 | |
|       such that <span class="emphasis"><em><code class="literal">xy ≠ yx</code></em></span>). A good mnemotechnical
 | |
|       way of remembering things is by using the formula <span class="emphasis"><em><code class="literal">i*i =
 | |
|       j*j = k*k = -1</code></em></span>.
 | |
|     </p>
 | |
| <p>
 | |
|       Quaternions (and their kin) are described in far more details in this other
 | |
|       <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata
 | |
|       and addenda</a>).
 | |
|     </p>
 | |
| <p>
 | |
|       Some traditional constructs, such as the exponential, carry over without too
 | |
|       much change into the realms of quaternions, but other, such as taking a square
 | |
|       root, do not.
 | |
|     </p>
 | |
| </div>
 | |
| <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
 | |
| <td align="left"></td>
 | |
| <td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
 | |
|       Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
 | |
|       Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani,
 | |
|       Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
 | |
|         Distributed under the Boost Software License, Version 1.0. (See accompanying
 | |
|         file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
 | |
|       </p>
 | |
| </div></td>
 | |
| </tr></table>
 | |
| <hr>
 | |
| <div class="spirit-nav">
 | |
| <a accesskey="p" href="../quaternions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
 | |
| </div>
 | |
| </body>
 | |
| </html>
 |