mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-19 18:42:06 -05:00
123 lines
3.6 KiB
C++
123 lines
3.6 KiB
C++
/*
|
|
Copyright 2011 Mario Mulansky
|
|
Copyright 2012 Karsten Ahnert
|
|
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or
|
|
copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
|
|
/*
|
|
* Example of a 2D simulation of nonlinearly coupled oscillators.
|
|
* Program just prints final energy which should be close to the initial energy (1.0).
|
|
* No parallelization is employed here.
|
|
* Run time on a 2.3GHz Intel Core-i5: about 10 seconds for 100 steps.
|
|
* Compile simply via bjam or directly:
|
|
* g++ -O3 -I${BOOST_ROOT} -I../../../../.. spreading.cpp
|
|
*/
|
|
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <cstdlib>
|
|
#include <sys/time.h>
|
|
|
|
#include <boost/ref.hpp>
|
|
#include <boost/numeric/odeint/stepper/symplectic_rkn_sb3a_mclachlan.hpp>
|
|
|
|
// we use a vector< vector< double > > as state type,
|
|
// for that some functionality has to be added for odeint to work
|
|
#include "nested_range_algebra.hpp"
|
|
#include "vector_vector_resize.hpp"
|
|
|
|
// defines the rhs of our dynamical equation
|
|
#include "lattice2d.hpp"
|
|
/* dynamical equations (Hamiltonian structure):
|
|
dqdt_{i,j} = p_{i,j}
|
|
dpdt_{i,j} = - omega_{i,j}*q_{i,j} - \beta*[ (q_{i,j} - q_{i,j-1})^3
|
|
+(q_{i,j} - q_{i,j+1})^3
|
|
+(q_{i,j} - q_{i-1,j})^3
|
|
+(q_{i,j} - q_{i+1,j})^3 ]
|
|
*/
|
|
|
|
|
|
using namespace std;
|
|
|
|
static const int MAX_N = 1024;//2048;
|
|
|
|
static const size_t KAPPA = 2;
|
|
static const size_t LAMBDA = 4;
|
|
static const double W = 1.0;
|
|
static const double gap = 0.0;
|
|
static const size_t steps = 100;
|
|
static const double dt = 0.1;
|
|
|
|
double initial_e = 1.0;
|
|
double beta = 1.0;
|
|
int realization_index = 0;
|
|
|
|
//the state type
|
|
typedef vector< vector< double > > state_type;
|
|
|
|
//the stepper, choose a symplectic one to account for hamiltonian structure
|
|
//use nested_range_algebra for calculations on vector< vector< ... > >
|
|
typedef boost::numeric::odeint::symplectic_rkn_sb3a_mclachlan<
|
|
state_type , state_type , double , state_type , state_type , double ,
|
|
nested_range_algebra< boost::numeric::odeint::range_algebra > ,
|
|
boost::numeric::odeint::default_operations > stepper_type;
|
|
|
|
double time_diff_in_ms( timeval &t1 , timeval &t2 )
|
|
{ return (t2.tv_sec - t1.tv_sec)*1000.0 + (t2.tv_usec - t1.tv_usec)/1000.0 + 0.5; }
|
|
|
|
|
|
int main( int argc, const char* argv[] ) {
|
|
|
|
srand( time(NULL) );
|
|
|
|
lattice2d< KAPPA , LAMBDA > lattice( beta );
|
|
|
|
|
|
lattice.generate_pot( W , gap , MAX_N );
|
|
|
|
state_type q( MAX_N , vector< double >( MAX_N , 0.0 ) );
|
|
|
|
state_type p( q );
|
|
|
|
state_type energy( q );
|
|
|
|
p[MAX_N/2][MAX_N/2] = sqrt( 0.5*initial_e );
|
|
p[MAX_N/2+1][MAX_N/2] = sqrt( 0.5*initial_e );
|
|
p[MAX_N/2][MAX_N/2+1] = sqrt( 0.5*initial_e );
|
|
p[MAX_N/2+1][MAX_N/2+1] = sqrt( 0.5*initial_e );
|
|
|
|
cout.precision(10);
|
|
|
|
lattice.local_energy( q , p , energy );
|
|
double e=0.0;
|
|
for( size_t i=0 ; i<energy.size() ; ++i )
|
|
for( size_t j=0 ; j<energy[i].size() ; ++j )
|
|
{
|
|
e += energy[i][j];
|
|
}
|
|
|
|
cout << "initial energy: " << lattice.energy( q , p ) << endl;
|
|
|
|
timeval elapsed_time_start , elapsed_time_end;
|
|
gettimeofday(&elapsed_time_start , NULL);
|
|
|
|
stepper_type stepper;
|
|
|
|
for( size_t step=0 ; step<=steps ; ++step )
|
|
{
|
|
stepper.do_step( boost::ref( lattice ) ,
|
|
make_pair( boost::ref( q ) , boost::ref( p ) ) ,
|
|
0.0 , 0.1 );
|
|
}
|
|
|
|
gettimeofday(&elapsed_time_end , NULL);
|
|
double elapsed_time = time_diff_in_ms( elapsed_time_start , elapsed_time_end );
|
|
cout << steps << " steps in " << elapsed_time/1000 << " s (energy: " << lattice.energy( q , p ) << ")" << endl;
|
|
}
|