mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			253 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 | 
						|
"http://www.w3.org/TR/html4/loose.dtd">
 | 
						|
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
  <meta http-equiv="Content-Language" content="en-us">
 | 
						|
  <meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
 | 
						|
  <link rel="stylesheet" type="text/css" href="../../../../boost.css">
 | 
						|
 | 
						|
  <title>Checking policies</title>
 | 
						|
</head>
 | 
						|
 | 
						|
<body>
 | 
						|
  <h1>Checking policies</h1>
 | 
						|
 | 
						|
  <p>A checking policy controls how the <code>interval</code> class will deal
 | 
						|
  with special cases like: empty intervals, infinite numbers, invalid
 | 
						|
  values.</p>
 | 
						|
 | 
						|
  <p>For example, let's consider <code>operator+(interval, T)</code>. The
 | 
						|
  second argument could be an invalid value (for a floating-point number, it
 | 
						|
  is a NaN). What to do in such a case? First, we could say that the second
 | 
						|
  argument can never be an invalid number. Second, we could also say such a
 | 
						|
  situation can arise but is forbidden. Third, we could allow such values and
 | 
						|
  generate an empty interval when encountered. And there is many other
 | 
						|
  possibilities.</p>
 | 
						|
 | 
						|
  <p>It is the reason why such a policy is used: there is a lot of
 | 
						|
  interesting behaviors and it would be sad to arbitrarily select one of
 | 
						|
  these.</p>
 | 
						|
 | 
						|
  <h2>Requirements</h2>
 | 
						|
 | 
						|
  <p>The checking class should satisfy the following requirement (in the form
 | 
						|
  of an interface):</p>
 | 
						|
  <pre>
 | 
						|
/* requirements for checking policy */
 | 
						|
struct checking
 | 
						|
{
 | 
						|
  static T pos_inf();
 | 
						|
  static T neg_inf();
 | 
						|
  static T nan();
 | 
						|
  static bool is_nan(const T&);
 | 
						|
  static T empty_lower();
 | 
						|
  static T empty_upper();
 | 
						|
  static bool is_empty(const T&, const T&);
 | 
						|
};
 | 
						|
</pre>
 | 
						|
 | 
						|
  <p>The first two functions, <code>pos_inf</code> and <code>neg_inf</code>,
 | 
						|
  are invoked each time the library has to create the infinite bound of an
 | 
						|
  interval. For example, <code>interval::whole</code> computes
 | 
						|
  <code>interval(checking::neg_inf(), checking::pos_inf())</code>. If
 | 
						|
  infinite values are allowed and
 | 
						|
  <code>std::numeric_limits<T>::infinity()</code> returns a correct
 | 
						|
  value, such a value can be used.</p>
 | 
						|
 | 
						|
  <p>Next comes <code>nan</code>. This function is used each time a function
 | 
						|
  need to return a value of type <code>T</code> but is unable to compute it.
 | 
						|
  It only happens when one of the arguments of the function is invalid. For
 | 
						|
  example, if you ask what the median value of an empty interval is,
 | 
						|
  <code>nan</code> will be used. But please remember: <code>lower</code> and
 | 
						|
  <code>upper</code> directly return the value stocked in the interval; so,
 | 
						|
  if the interval is empty, <code>lower</code> will not answer
 | 
						|
  <code>by</code> a call to <code>checking::nan</code> (but will return the
 | 
						|
  same value than <code>checking::empty_lower</code> could return).</p>
 | 
						|
 | 
						|
  <p><code>empty_lower</code> and <code>empty_upper</code> respectively
 | 
						|
  return the lower and upper bound of the empty interval. There is no
 | 
						|
  requirements for <code>empty_lower</code> and <code>empty_upper</code> to
 | 
						|
  return the same value than <code>checking::nan</code>. For example, if the
 | 
						|
  type <code>T</code> does not have any invalid value, the
 | 
						|
  <code>empty_</code> functions can return the [1;0] interval.</p>
 | 
						|
 | 
						|
  <p><code>is_nan</code> is used to test if a value of type <code>T</code> is
 | 
						|
  invalid or not. <code>is_empty</code> tests if the interval formed by the
 | 
						|
  two arguments is empty or not. Such tests will generally be at the
 | 
						|
  beginning of each function which involves an argument of type
 | 
						|
  <code>T</code>. If one of the inputs is declared invalid, the the function
 | 
						|
  will try to produce an invalid value or an input interval.</p>
 | 
						|
 | 
						|
  <h2>Synopsis</h2>
 | 
						|
  <pre>
 | 
						|
namespace boost {
 | 
						|
namespace numeric {
 | 
						|
namespace interval_lib {
 | 
						|
 | 
						|
template<class T>
 | 
						|
struct checking_base;
 | 
						|
template<class T, class Checking = checking_base<T>, class Exception = exception_create_empty<T> >
 | 
						|
struct checking_no_empty;
 | 
						|
template<class T, class Checking = checking_base<T> >
 | 
						|
struct checking_no_nan;
 | 
						|
template<class T, class Checking = checking_base<T>, class Exception = exception_invalid_number<T> >
 | 
						|
struct checking_catch_nan;
 | 
						|
 | 
						|
template<class T> struct exception_create_empty { T operator()(); };
 | 
						|
template<class T> struct exception_invalid_number { void operator()(); };
 | 
						|
 | 
						|
} // namespace numeric
 | 
						|
} // namespace interval_lib
 | 
						|
} // namespace boost
 | 
						|
</pre>
 | 
						|
 | 
						|
  <h2>Predefined classes</h2>
 | 
						|
 | 
						|
  <p>In order to simplify the customization of the policy, some templates are
 | 
						|
  already defined in the library.</p>
 | 
						|
 | 
						|
  <p>First of all, there is <code>checking_base</code>. Thanks to the
 | 
						|
  information provided by <code>std::numeric_limits<T></code>, this
 | 
						|
  class is able to generate a base for the policy. If <code>T</code> has
 | 
						|
  quiet NaNs (as said by <code>numeric_limits::has_quiet_NaN</code>), then
 | 
						|
  the value is used for <code>nan</code>, <code>empty_lower</code>,
 | 
						|
  <code>empty_upper</code>; and a basic test is used for <code>is_nan</code>
 | 
						|
  (it is <code>x!=x</code>). If <code>T</code> does not have quiet NaNs, then
 | 
						|
  <code>nan</code> is an <code>assert(false)</code>, the empty interval is
 | 
						|
  [1,0], and <code>is_nan</code> always return <code>false</code>. As for
 | 
						|
  <code>nan</code>, <code>pos_inf</code> returns
 | 
						|
  <code>numeric_limits::infinity()</code> if possible, or is an
 | 
						|
  <code>assert(false</code>) otherwise. <code>neg_inf</code> returns the
 | 
						|
  opposite. Finally, <code>is_empty(T l,T u)</code> is always defined by
 | 
						|
  <code>!(l<=u)</code>.</p>
 | 
						|
 | 
						|
  <p>Next comes <code>checking_no_empty</code>. Using it means that each time
 | 
						|
  an empty interval should be produced (by <code>empty_lower</code> and
 | 
						|
  <code>empty_upper</code>), the function object given by the
 | 
						|
  <code>Exception</code> argument of the template is invoked and the value it
 | 
						|
  returns is propagated. So, if <code>Exception</code> is appropriately
 | 
						|
  defined (for example it could throw an exception, hence the name of the
 | 
						|
  argument), you can be sure no empty interval will ever be created. So
 | 
						|
  <code>is_empty</code> will always return <code>false</code> (since there is
 | 
						|
  no need to test for an empty interval). And as explained before, in that
 | 
						|
  case we can also replace <code>nan</code> by an <code>assert(false)</code>;
 | 
						|
  you will be sure no invalid number will ever be produced. If this template
 | 
						|
  is not used, it implicitly means that all the functions can produce empty
 | 
						|
  intervals and they correctly deal with empty interval arguments.</p>
 | 
						|
 | 
						|
  <p>Finally there are <code>checking_no_nan</code> and
 | 
						|
  <code>checking_catch_nan</code>. The first one expresses the functions of
 | 
						|
  the library will never get an invalid number as argument. So
 | 
						|
  <code>is_nan</code> will only return <code>false</code>. The other one
 | 
						|
  means the arguments can be an invalid number but in that case,
 | 
						|
  <code>is_nan</code> will call the function object <code>Exception</code>
 | 
						|
  and return <code>false</code>. Indeed, this template means invalid numbers
 | 
						|
  should never make their way through to the body of the function. If none of
 | 
						|
  this two templates is used, it implicitly means that all the functions can
 | 
						|
  get invalid number arguments and they will correctly deal with them.</p>
 | 
						|
 | 
						|
  <p><code>exception_create_empty</code> throws
 | 
						|
  <code>std::runtime_error</code> with the message <code>"boost::interval:
 | 
						|
  empty interval created"</code> and <code>exception_invalid_number</code>
 | 
						|
  throws <code>std::invalid_argument</code> with the message
 | 
						|
  <code>"boost::interval: invalid number"</code>.</p>
 | 
						|
 | 
						|
  <h2>Customizing your own checking policy</h2>
 | 
						|
 | 
						|
  <p>In order to define a suitable policy, you need to correctly say what you
 | 
						|
  expect from your interval class. First of all, are you interested in
 | 
						|
  getting empty intervals at the end of a calculus? If you do not want to
 | 
						|
  obtain empty intervals, <code>empty_lower</code> and
 | 
						|
  <code>empty_upper</code> have to fail when invoked (they can throw an
 | 
						|
  exception, set a flag, etc). However, if no function is able to produce an
 | 
						|
  empty interval, it is no more necessary to do the test, so
 | 
						|
  <code>is_empty</code> may always return <code>false</code>. In this case, a
 | 
						|
  good compiler will do a lot of optimizations.</p>
 | 
						|
 | 
						|
  <p>You could also be interested in getting empty intervals at the end of
 | 
						|
  the calculus. For example, if you need to transform an array of unsure
 | 
						|
  values (or intervals) in a new array of intervals, you may not want to stop
 | 
						|
  the conversion at the first encountered problem. So
 | 
						|
  <code>empty_lower</code> and <code>empty_upper</code> need to return
 | 
						|
  suitable values in order to define an empty interval (you can use an upper
 | 
						|
  bound which is not greater or equal than the lower bound for example); and
 | 
						|
  <code>is_empty</code> must be able to distinguish empty intervals from the
 | 
						|
  valid intervals.</p>
 | 
						|
 | 
						|
  <p>Another important question is: is it possible that some base numbers
 | 
						|
  (objects of type <code>T</code>) are invalid? And if it is possible, are
 | 
						|
  they allowed or not ? If it is not possible, no test is necessary;
 | 
						|
  <code>is_nan</code> may always return <code>false</code>. In this case too,
 | 
						|
  a good compiler will do a lot of optimizations. If function arguments can
 | 
						|
  hold invalid numbers, two cases must be considered according to whether
 | 
						|
  they are allowed or not. If they are allowed, <code>is_nan</code> just has
 | 
						|
  to test if they are invalid or not. If they are forbidden,
 | 
						|
  <code>is_nan</code> should fail (exception, assert, etc.) when invoked on
 | 
						|
  an invalid argument and return <code>false</code> otherwise. The value
 | 
						|
  returned by <code>nan</code> does not have any interest since the interval
 | 
						|
  functions are guaranteed not to produce invalid interval bounds unless the
 | 
						|
  user passes invalid numbers to the constructors. So you can put an assert
 | 
						|
  inside if you do not trust the library. :-)</p>
 | 
						|
 | 
						|
  <p>And finally, you need to decide what to do with <code>nan</code> if it
 | 
						|
  has not already been decided at the beginning, and with
 | 
						|
  <code>pos_inf</code> and <code>neg_inf</code>. These functions should
 | 
						|
  return a value or start an exceptional behavior (especially if the base
 | 
						|
  type does not have corresponding values).</p>
 | 
						|
 | 
						|
  <h2>Some examples</h2>
 | 
						|
 | 
						|
  <ul>
 | 
						|
    <li>If you need a checking policy that allows the library to correctly
 | 
						|
    manipulate data, even if they contain invalid numbers and empty
 | 
						|
    intervals, then <code>checking_base<T></code> is a
 | 
						|
    possibility.</li>
 | 
						|
 | 
						|
    <li>If you do not want empty intervals to be created and are not sure all
 | 
						|
    the numbers are valid, then <code>checking_catch_nan<T,
 | 
						|
    checking_no_empty<T> ></code> can help you.</li>
 | 
						|
 | 
						|
    <li>If all the numbers will be valid and if no empty interval is supposed
 | 
						|
    to be created (or if you do not want them to be created), then you can
 | 
						|
    use <code>checking_no_nan<T, checking_no_empty<T> ></code>.
 | 
						|
    Please note that if <code>T</code> does not have a way to represent
 | 
						|
    invalid numbers, then this policy will behave the same way as
 | 
						|
    <code>checking_no_empty<T></code>. This is the default policy and
 | 
						|
    it is also called <code>interval_lib::checking_strict</code>.</li>
 | 
						|
 | 
						|
    <li>If all numerical data are valid but the algorithm can produce and
 | 
						|
    manipulate empty intervals, then <code>checking_no_nan<T></code>
 | 
						|
    should be used.</li>
 | 
						|
 | 
						|
    <li>Similarly, if invalid data have to be signaled and the algorithm can
 | 
						|
    manipulate empty intervals, the <code>checking_catch_nan<T></code>
 | 
						|
    is a solution.</li>
 | 
						|
 | 
						|
    <li>If you do not mind having undefined results when an empty interval or
 | 
						|
    an interval number is produced, your best bet is to create your own
 | 
						|
    policy by overloading <code>checking_base</code> and modifying
 | 
						|
    <code>is_nan</code> et <code>is_empty</code> in order for them to always
 | 
						|
    return <code>false</code>. It is probably the fastest checking policy
 | 
						|
    available; however, it suffers from its deficient security.</li>
 | 
						|
  </ul>
 | 
						|
  <hr>
 | 
						|
 | 
						|
  <p><a href="http://validator.w3.org/check?uri=referer"><img border="0" src=
 | 
						|
  "../../../../doc/images/valid-html401.png" alt="Valid HTML 4.01 Transitional"
 | 
						|
  height="31" width="88"></a></p>
 | 
						|
 | 
						|
  <p>Revised 
 | 
						|
  <!--webbot bot="Timestamp" s-type="EDITED" s-format="%Y-%m-%d" startspan -->2006-12-24<!--webbot bot="Timestamp" endspan i-checksum="12172" --></p>
 | 
						|
 | 
						|
  <p><i>Copyright © 2002 Guillaume Melquiond, Sylvain Pion, Hervé
 | 
						|
  Brönnimann, Polytechnic University<br>
 | 
						|
  Copyright © 2003-2004 Guillaume Melquiond</i></p>
 | 
						|
 | 
						|
  <p><i>Distributed under the Boost Software License, Version 1.0. (See
 | 
						|
  accompanying file <a href="../../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a>
 | 
						|
  or copy at <a href=
 | 
						|
  "http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p>
 | 
						|
</body>
 | 
						|
</html>
 |