mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			85 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<html>
 | 
						|
<head>
 | 
						|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
 | 
						|
<title>Octonion Creation Functions</title>
 | 
						|
<link rel="stylesheet" href="../math.css" type="text/css">
 | 
						|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
 | 
						|
<link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
 | 
						|
<link rel="up" href="../octonions.html" title="Chapter 10. Octonions">
 | 
						|
<link rel="prev" href="oct_value_ops.html" title="Octonion Value Operations">
 | 
						|
<link rel="next" href="oct_trans.html" title="Octonions Transcendentals">
 | 
						|
</head>
 | 
						|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
 | 
						|
<table cellpadding="2" width="100%"><tr>
 | 
						|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
 | 
						|
<td align="center"><a href="../../../../../index.html">Home</a></td>
 | 
						|
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
 | 
						|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
 | 
						|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
 | 
						|
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
 | 
						|
</tr></table>
 | 
						|
<hr>
 | 
						|
<div class="spirit-nav">
 | 
						|
<a accesskey="p" href="oct_value_ops.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="oct_trans.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
 | 
						|
</div>
 | 
						|
<div class="section">
 | 
						|
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
 | 
						|
<a name="math_toolkit.oct_create"></a><a class="link" href="oct_create.html" title="Octonion Creation Functions">Octonion Creation Functions</a>
 | 
						|
</h2></div></div></div>
 | 
						|
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">octonion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">spherical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi2</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi3</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi4</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi5</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi6</span><span class="special">);</span>
 | 
						|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">octonion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">multipolar</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho2</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta2</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho3</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta3</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho4</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta4</span><span class="special">);</span>
 | 
						|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">octonion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">cylindrical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">angle</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h2</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h3</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h4</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h5</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h6</span><span class="special">);</span>
 | 
						|
</pre>
 | 
						|
<p>
 | 
						|
      These build octonions in a way similar to the way polar builds complex numbers,
 | 
						|
      as there is no strict equivalent to polar coordinates for octonions.
 | 
						|
    </p>
 | 
						|
<p>
 | 
						|
      <code class="computeroutput"><span class="identifier">spherical</span></code> is a simple transposition
 | 
						|
      of <code class="computeroutput"><span class="identifier">polar</span></code>, it takes as inputs
 | 
						|
      a (positive) magnitude and a point on the hypersphere, given by three angles.
 | 
						|
      The first of these, <span class="emphasis"><em>theta</em></span> has a natural range of -pi to
 | 
						|
      +pi, and the other two have natural ranges of -pi/2 to +pi/2 (as is the case
 | 
						|
      with the usual spherical coordinates in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>).
 | 
						|
      Due to the many symmetries and periodicities, nothing untoward happens if the
 | 
						|
      magnitude is negative or the angles are outside their natural ranges. The expected
 | 
						|
      degeneracies (a magnitude of zero ignores the angles settings...) do happen
 | 
						|
      however.
 | 
						|
    </p>
 | 
						|
<p>
 | 
						|
      <code class="computeroutput"><span class="identifier">cylindrical</span></code> is likewise a simple
 | 
						|
      transposition of the usual cylindrical coordinates in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>,
 | 
						|
      which in turn is another derivative of planar polar coordinates. The first
 | 
						|
      two inputs are the polar coordinates of the first <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>
 | 
						|
      component of the octonion. The third and fourth inputs are placed into the
 | 
						|
      third and fourth <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span> components
 | 
						|
      of the octonion, respectively.
 | 
						|
    </p>
 | 
						|
<p>
 | 
						|
      <code class="computeroutput"><span class="identifier">multipolar</span></code> is yet another simple
 | 
						|
      generalization of polar coordinates. This time, both <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>
 | 
						|
      components of the octonion are given in polar coordinates.
 | 
						|
    </p>
 | 
						|
<p>
 | 
						|
      In this version of our implementation of octonions, there is no analogue of
 | 
						|
      the complex value operation arg as the situation is somewhat more complicated.
 | 
						|
    </p>
 | 
						|
</div>
 | 
						|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
 | 
						|
<td align="left"></td>
 | 
						|
<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
 | 
						|
      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
 | 
						|
      Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani,
 | 
						|
      Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
 | 
						|
        Distributed under the Boost Software License, Version 1.0. (See accompanying
 | 
						|
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
 | 
						|
      </p>
 | 
						|
</div></td>
 | 
						|
</tr></table>
 | 
						|
<hr>
 | 
						|
<div class="spirit-nav">
 | 
						|
<a accesskey="p" href="oct_value_ops.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="oct_trans.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
 | 
						|
</div>
 | 
						|
</body>
 | 
						|
</html>
 |