mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			152 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  [auto_generated]
 | |
|  libs/numeric/odeint/examples/black_hole.cpp
 | |
| 
 | |
|  [begin_description]
 | |
|  This example shows how the __float128 from gcc libquadmath can be used with odeint.
 | |
|  [end_description]
 | |
| 
 | |
|  Copyright 2012 Karsten Ahnert
 | |
|  Copyright 2012 Lee Hodgkinson
 | |
|  Copyright 2012 Mario Mulansky
 | |
| 
 | |
|  Distributed under the Boost Software License, Version 1.0.
 | |
|  (See accompanying file LICENSE_1_0.txt or
 | |
|  copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
|  */
 | |
| 
 | |
| #include <cstdlib>
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <vector>
 | |
| #include <complex>
 | |
| 
 | |
| extern "C" {
 | |
| #include <quadmath.h>
 | |
| }
 | |
| 
 | |
| const __float128 zero =strtoflt128 ("0.0", NULL);
 | |
| 
 | |
| namespace std {
 | |
| 
 | |
|     inline __float128 abs( __float128 x )
 | |
|     {
 | |
|         return fabsq( x );
 | |
|     }
 | |
| 
 | |
|     inline __float128 sqrt( __float128 x )
 | |
|     {
 | |
|         return sqrtq( x );
 | |
|     }
 | |
| 
 | |
|     inline __float128 pow( __float128 x , __float128 y )
 | |
|     {
 | |
|         return powq( x , y );
 | |
|     }
 | |
| 
 | |
|     inline __float128 abs( std::complex< __float128 > x )
 | |
|     {
 | |
|         return sqrtq( x.real() * x.real() + x.imag() * x.imag() );
 | |
|     }
 | |
| 
 | |
|     inline std::complex< __float128 > pow( std::complex< __float128> x , __float128 y )
 | |
|     {
 | |
|         __float128 r = pow( abs(x) , y );
 | |
|         __float128 phi = atanq( x.imag() / x.real() );
 | |
|         return std::complex< __float128 >( r * cosq( y * phi ) , r * sinq( y * phi ) );
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline std::ostream& operator<< (std::ostream& os, const __float128& f) {
 | |
| 
 | |
|     char* y = new char[1000];
 | |
|     quadmath_snprintf(y, 1000, "%.30Qg", f) ;
 | |
|     os.precision(30);
 | |
|     os<<y;
 | |
|     delete[] y;
 | |
|     return os;
 | |
| }
 | |
| 
 | |
| 
 | |
| #include <boost/array.hpp>
 | |
| #include <boost/range/algorithm.hpp>
 | |
| #include <boost/range/adaptor/filtered.hpp>
 | |
| #include <boost/range/numeric.hpp>
 | |
| #include <boost/numeric/odeint.hpp>
 | |
| 
 | |
| 
 | |
| 
 | |
| using namespace boost::numeric::odeint;
 | |
| using namespace std;
 | |
| 
 | |
| typedef __float128 my_float;
 | |
| typedef std::vector< std::complex < my_float > > state_type;
 | |
| 
 | |
| struct radMod
 | |
| {
 | |
|     my_float m_om;
 | |
|     my_float m_l;
 | |
| 
 | |
|     radMod( my_float om , my_float l )
 | |
|         : m_om( om ) , m_l( l ) { }
 | |
| 
 | |
|     void operator()( const state_type &x , state_type &dxdt , my_float r ) const
 | |
|     {
 | |
| 
 | |
|         dxdt[0] = x[1];
 | |
|         dxdt[1] = -(2*(r-1)/(r*(r-2)))*x[1]-((m_om*m_om*r*r/((r-2)*(r-2)))-(m_l*(m_l+1)/(r*(r-2))))*x[0];
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| int main( int argc , char **argv )
 | |
| {
 | |
| 
 | |
| 
 | |
|     state_type x(2);
 | |
| 
 | |
|     my_float re0 = strtoflt128( "-0.00008944230755601224204687038354994353820468" , NULL );
 | |
|     my_float im0 = strtoflt128( "0.00004472229441850588228136889483397204368247" , NULL );
 | |
|     my_float re1 = strtoflt128( "-4.464175354293244250869336196695966076150E-6 " , NULL );
 | |
|     my_float im1 = strtoflt128( "-8.950483248390306670770345406051469584488E-6" , NULL );
 | |
| 
 | |
|     x[0] = complex< my_float >( re0 ,im0 );
 | |
|     x[1] = complex< my_float >( re1 ,im1 );
 | |
| 
 | |
|     const my_float dt =strtoflt128 ("-0.001", NULL);
 | |
|     const my_float start =strtoflt128 ("10000.0", NULL);
 | |
|     const my_float end =strtoflt128 ("9990.0", NULL);
 | |
|     const my_float omega =strtoflt128 ("2.0", NULL);
 | |
|     const my_float ell =strtoflt128 ("1.0", NULL);
 | |
| 
 | |
| 
 | |
| 
 | |
|     my_float abs_err = strtoflt128( "1.0E-15" , NULL ) , rel_err = strtoflt128( "1.0E-10" , NULL );
 | |
|     my_float a_x = strtoflt128( "1.0" , NULL ) , a_dxdt = strtoflt128( "1.0" , NULL );
 | |
| 
 | |
|     typedef runge_kutta_dopri5< state_type, my_float > dopri5_type;
 | |
|     typedef controlled_runge_kutta< dopri5_type > controlled_dopri5_type;
 | |
|     typedef dense_output_runge_kutta< controlled_dopri5_type > dense_output_dopri5_type;
 | |
|     
 | |
|     dense_output_dopri5_type dopri5( controlled_dopri5_type( default_error_checker< my_float >( abs_err , rel_err , a_x , a_dxdt ) ) );
 | |
| 
 | |
|     std::for_each( make_adaptive_time_iterator_begin(dopri5 , radMod(omega , ell) , x , start , end , dt) ,
 | |
|                    make_adaptive_time_iterator_end(dopri5 , radMod(omega , ell) , x ) ,
 | |
|                    []( const std::pair< state_type&, my_float > &x ) {
 | |
|                        std::cout << x.second << ", " << x.first[0].real() << "\n"; }
 | |
|         );
 | |
| 
 | |
| 
 | |
| 
 | |
|     return 0;
 | |
| }
 |