mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			284 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<html>
 | 
						|
<head>
 | 
						|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
 | 
						|
<title>Minimax Approximations and the Remez Algorithm</title>
 | 
						|
<link rel="stylesheet" href="../../math.css" type="text/css">
 | 
						|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
 | 
						|
<link rel="home" href="../../index.html" title="Math Toolkit 2.5.1">
 | 
						|
<link rel="up" href="../internals.html" title="Internal tools">
 | 
						|
<link rel="prev" href="tuples.html" title="Tuples">
 | 
						|
<link rel="next" href="error_test.html" title="Relative Error and Testing">
 | 
						|
</head>
 | 
						|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
 | 
						|
<table cellpadding="2" width="100%"><tr>
 | 
						|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
 | 
						|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
 | 
						|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
 | 
						|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
 | 
						|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
 | 
						|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
 | 
						|
</tr></table>
 | 
						|
<hr>
 | 
						|
<div class="spirit-nav">
 | 
						|
<a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
 | 
						|
</div>
 | 
						|
<div class="section">
 | 
						|
<div class="titlepage"><div><div><h3 class="title">
 | 
						|
<a name="math_toolkit.internals.minimax"></a><a class="link" href="minimax.html" title="Minimax Approximations and the Remez Algorithm">Minimax Approximations
 | 
						|
      and the Remez Algorithm</a>
 | 
						|
</h3></div></div></div>
 | 
						|
<p>
 | 
						|
        The directory libs/math/minimax contains a command line driven program for
 | 
						|
        the generation of minimax approximations using the Remez algorithm. Both
 | 
						|
        polynomial and rational approximations are supported, although the latter
 | 
						|
        are tricky to converge: it is not uncommon for convergence of rational forms
 | 
						|
        to fail. No such limitations are present for polynomial approximations which
 | 
						|
        should always converge smoothly.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        It's worth stressing that developing rational approximations to functions
 | 
						|
        is often not an easy task, and one to which many books have been devoted.
 | 
						|
        To use this tool, you will need to have a reasonable grasp of what the Remez
 | 
						|
        algorithm is, and the general form of the approximation you want to achieve.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        Unless you already familar with the Remez method, you should first read the
 | 
						|
        <a class="link" href="../remez.html" title="The Remez Method">brief background article explaining the
 | 
						|
        principles behind the Remez algorithm</a>.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        The program consists of two parts:
 | 
						|
      </p>
 | 
						|
<div class="variablelist">
 | 
						|
<p class="title"><b></b></p>
 | 
						|
<dl class="variablelist">
 | 
						|
<dt><span class="term">main.cpp</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Contains the command line parser, and all the calls to the Remez code.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">f.cpp</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Contains the function to approximate.
 | 
						|
            </p></dd>
 | 
						|
</dl>
 | 
						|
</div>
 | 
						|
<p>
 | 
						|
        Therefore to use this tool, you must modify f.cpp to return the function
 | 
						|
        to approximate. The tools supports multiple function approximations within
 | 
						|
        the same compiled program: each as a separate variant:
 | 
						|
      </p>
 | 
						|
<pre class="programlisting"><span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span> <span class="identifier">f</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span><span class="special">&</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">variant</span><span class="special">);</span>
 | 
						|
</pre>
 | 
						|
<p>
 | 
						|
        Returns the value of the function <span class="emphasis"><em>variant</em></span> at point
 | 
						|
        <span class="emphasis"><em>x</em></span>. So if you wish you can just add the function to approximate
 | 
						|
        as a new variant after the existing examples.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        In addition to those two files, the program needs to be linked to a <a class="link" href="../high_precision/use_ntl.html" title="Using NTL Library">patched NTL library to compile</a>.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        Note that the function <span class="emphasis"><em>f</em></span> must return the rational part
 | 
						|
        of the approximation: for example if you are approximating a function <span class="emphasis"><em>f(x)</em></span>
 | 
						|
        then it is quite common to use:
 | 
						|
      </p>
 | 
						|
<pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">g</span><span class="special">(</span><span class="identifier">x</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">x</span><span class="special">))</span>
 | 
						|
</pre>
 | 
						|
<p>
 | 
						|
        where <span class="emphasis"><em>g(x)</em></span> is the dominant part of <span class="emphasis"><em>f(x)</em></span>,
 | 
						|
        <span class="emphasis"><em>Y</em></span> is some constant, and <span class="emphasis"><em>R(x)</em></span> is
 | 
						|
        the rational approximation part, usually optimised for a low absolute error
 | 
						|
        compared to |Y|.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        In this case you would define <span class="emphasis"><em>f</em></span> to return <span class="emphasis"><em>f(x)/g(x)</em></span>
 | 
						|
        and then set the y-offset of the approximation to <span class="emphasis"><em>Y</em></span>
 | 
						|
        (see command line options below).
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        Many other forms are possible, but in all cases the objective is to split
 | 
						|
        <span class="emphasis"><em>f(x)</em></span> into a dominant part that you can evaluate easily
 | 
						|
        using standard math functions, and a smooth and slowly changing rational
 | 
						|
        approximation part. Refer to your favourite textbook for more examples.
 | 
						|
      </p>
 | 
						|
<p>
 | 
						|
        Command line options for the program are as follows:
 | 
						|
      </p>
 | 
						|
<div class="variablelist">
 | 
						|
<p class="title"><b></b></p>
 | 
						|
<dl class="variablelist">
 | 
						|
<dt><span class="term">variant N</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the current function variant to N. This allows multiple functions
 | 
						|
              that are to be approximated to be compiled into the same executable.
 | 
						|
              Defaults to 0.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">range a b</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the domain for the approximation to the range [a,b], defaults
 | 
						|
              to [0,1].
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">relative</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the Remez code to optimise for relative error. This is the default
 | 
						|
              at program startup. Note that relative error can only be used if f(x)
 | 
						|
              has no roots over the range being optimised.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">absolute</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the Remez code to optimise for absolute error.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">pin [true|false]</span></dt>
 | 
						|
<dd><p>
 | 
						|
              "Pins" the code so that the rational approximation passes
 | 
						|
              through the origin. Obviously only set this to <span class="emphasis"><em>true</em></span>
 | 
						|
              if R(0) must be zero. This is typically used when trying to preserve
 | 
						|
              a root at [0,0] while also optimising for relative error.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">order N D</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the order of the approximation to <span class="emphasis"><em>N</em></span> in the
 | 
						|
              numerator and <span class="emphasis"><em>D</em></span> in the denominator. If <span class="emphasis"><em>D</em></span>
 | 
						|
              is zero then the result will be a polynomial approximation. There will
 | 
						|
              be N+D+2 coefficients in total, the first coefficient of the numerator
 | 
						|
              is zero if <span class="emphasis"><em>pin</em></span> was set to true, and the first
 | 
						|
              coefficient of the denominator is always one.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">working-precision N</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the working precision of NTL::RR to <span class="emphasis"><em>N</em></span> binary
 | 
						|
              digits. Defaults to 250.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">target-precision N</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the precision of printed output to <span class="emphasis"><em>N</em></span> binary
 | 
						|
              digits: set to the same number of digits as the type that will be used
 | 
						|
              to evaluate the approximation. Defaults to 53 (for double precision).
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">skew val</span></dt>
 | 
						|
<dd><p>
 | 
						|
              "Skews" the initial interpolated control points towards one
 | 
						|
              end or the other of the range. Positive values skew the initial control
 | 
						|
              points towards the left hand side of the range, and negative values
 | 
						|
              towards the right hand side. If an approximation won't converge (a
 | 
						|
              common situation) try adjusting the skew parameter until the first
 | 
						|
              step yields the smallest possible error. <span class="emphasis"><em>val</em></span> should
 | 
						|
              be in the range [-100,+100], the default is zero.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">brake val</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets a brake on each step so that the change in the control points
 | 
						|
              is braked by <span class="emphasis"><em>val%</em></span>. Defaults to 50, try a higher
 | 
						|
              value if an approximation won't converge, or a lower value to get speedier
 | 
						|
              convergence.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">x-offset val</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the x-offset to <span class="emphasis"><em>val</em></span>: the approximation will
 | 
						|
              be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
 | 
						|
              where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span>
 | 
						|
              is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
 | 
						|
              to zero. To avoid rounding errors, take care to specify a value that
 | 
						|
              can be exactly represented as a floating point number.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">x-scale val</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the x-scale to <span class="emphasis"><em>val</em></span>: the approximation will
 | 
						|
              be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
 | 
						|
              where <span class="emphasis"><em>S</em></span> is the x-scale, <span class="emphasis"><em>X</em></span>
 | 
						|
              is the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
 | 
						|
              to one. To avoid rounding errors, take care to specify a value that
 | 
						|
              can be exactly represented as a floating point number.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">y-offset val</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the y-offset to <span class="emphasis"><em>val</em></span>: the approximation will
 | 
						|
              be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
 | 
						|
              where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span>
 | 
						|
              is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
 | 
						|
              to zero. To avoid rounding errors, take care to specify a value that
 | 
						|
              can be exactly represented as a floating point number.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">y-offset auto</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Sets the y-offset to the average value of f(x) evaluated at the two
 | 
						|
              endpoints of the range plus the midpoint of the range. The calculated
 | 
						|
              value is deliberately truncated to <span class="emphasis"><em>float</em></span> precision
 | 
						|
              (and should be stored as a <span class="emphasis"><em>float</em></span> in your code).
 | 
						|
              The approximation will be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">Y</span></code> where <span class="emphasis"><em>X</em></span> is
 | 
						|
              the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults to
 | 
						|
              zero.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">graph N</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Prints N evaluations of f(x) at evenly spaced points over the range
 | 
						|
              being optimised. If unspecified then <span class="emphasis"><em>N</em></span> defaults
 | 
						|
              to 3. Use to check that f(x) is indeed smooth over the range of interest.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">step N</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Performs <span class="emphasis"><em>N</em></span> steps, or one step if <span class="emphasis"><em>N</em></span>
 | 
						|
              is unspecified. After each step prints: the peek error at the extrema
 | 
						|
              of the error function of the approximation, the theoretical error term
 | 
						|
              solved for on the last step, and the maximum relative change in the
 | 
						|
              location of the Chebyshev control points. The approximation is converged
 | 
						|
              on the minimax solution when the two error terms are (approximately)
 | 
						|
              equal, and the change in the control points has decreased to a suitably
 | 
						|
              small value.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">test [float|double|long]</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Tests the current approximation at float, double, or long double precision.
 | 
						|
              Useful to check for rounding errors in evaluating the approximation
 | 
						|
              at fixed precision. Tests are conducted at the extrema of the error
 | 
						|
              function of the approximation, and at the zeros of the error function.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">test [float|double|long] N</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Tests the current approximation at float, double, or long double precision.
 | 
						|
              Useful to check for rounding errors in evaluating the approximation
 | 
						|
              at fixed precision. Tests are conducted at N evenly spaced points over
 | 
						|
              the range of the approximation. If none of [float|double|long] are
 | 
						|
              specified then tests using NTL::RR, this can be used to obtain the
 | 
						|
              error function of the approximation.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">rescale a b</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Takes the current Chebeshev control points, and rescales them over
 | 
						|
              a new interval [a,b]. Sometimes this can be used to obtain starting
 | 
						|
              control points for an approximation that can not otherwise be converged.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">rotate</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Moves one term from the numerator to the denominator, but keeps the
 | 
						|
              Chebyshev control points the same. Sometimes this can be used to obtain
 | 
						|
              starting control points for an approximation that can not otherwise
 | 
						|
              be converged.
 | 
						|
            </p></dd>
 | 
						|
<dt><span class="term">info</span></dt>
 | 
						|
<dd><p>
 | 
						|
              Prints out the current approximation: the location of the zeros of
 | 
						|
              the error function, the location of the Chebyshev control points, the
 | 
						|
              x and y offsets, and of course the coefficients of the polynomials.
 | 
						|
            </p></dd>
 | 
						|
</dl>
 | 
						|
</div>
 | 
						|
</div>
 | 
						|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
 | 
						|
<td align="left"></td>
 | 
						|
<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
 | 
						|
      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
 | 
						|
      Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani,
 | 
						|
      Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
 | 
						|
        Distributed under the Boost Software License, Version 1.0. (See accompanying
 | 
						|
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
 | 
						|
      </p>
 | 
						|
</div></td>
 | 
						|
</tr></table>
 | 
						|
<hr>
 | 
						|
<div class="spirit-nav">
 | 
						|
<a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
 | 
						|
</div>
 | 
						|
</body>
 | 
						|
</html>
 |