mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-19 10:32:02 -05:00
85 lines
2.6 KiB
C++
85 lines
2.6 KiB
C++
/*
|
|
* abm_precision.cpp
|
|
*
|
|
* example to check the order of the multi-step methods
|
|
*
|
|
* Copyright 2009-2013 Karsten Ahnert
|
|
* Copyright 2009-2013 Mario Mulansky
|
|
*
|
|
* Distributed under the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE_1_0.txt or
|
|
* copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
|
|
#include <boost/array.hpp>
|
|
#include <boost/numeric/odeint.hpp>
|
|
|
|
using namespace boost::numeric::odeint;
|
|
|
|
const int Steps = 4;
|
|
|
|
typedef double value_type;
|
|
|
|
typedef boost::array< double , 2 > state_type;
|
|
|
|
typedef runge_kutta_fehlberg78<state_type> initializing_stepper_type;
|
|
typedef adams_bashforth_moulton< Steps , state_type > stepper_type;
|
|
//typedef adams_bashforth< Steps , state_type > stepper_type;
|
|
|
|
// harmonic oscillator, analytic solution x[0] = sin( t )
|
|
struct osc
|
|
{
|
|
void operator()( const state_type &x , state_type &dxdt , const double t ) const
|
|
{
|
|
dxdt[0] = x[1];
|
|
dxdt[1] = -x[0];
|
|
}
|
|
};
|
|
|
|
int main()
|
|
{
|
|
stepper_type stepper;
|
|
initializing_stepper_type init_stepper;
|
|
const int o = stepper.order()+1; //order of the error is order of approximation + 1
|
|
|
|
const state_type x0 = {{ 0.0 , 1.0 }};
|
|
state_type x1 = x0;
|
|
double t = 0.0;
|
|
double dt = 0.25;
|
|
// initialization, does a number of steps already to fill internal buffer, t is increased
|
|
// we use the rk78 as initializing stepper
|
|
stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt );
|
|
// do a number of steps to fill the buffer with results from adams bashforth
|
|
for( size_t n=0 ; n < stepper.steps ; ++n )
|
|
{
|
|
stepper.do_step( osc() , x1 , t , dt );
|
|
t += dt;
|
|
}
|
|
double A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] );
|
|
double phi = std::asin(x1[0]/A) - t;
|
|
// now we do the actual step
|
|
stepper.do_step( osc() , x1 , t , dt );
|
|
// only examine the error of the adams-bashforth-moulton step, not the initialization
|
|
const double f = 2.0 * std::abs( A*sin(t+dt+phi) - x1[0] ) / std::pow( dt , o ); // upper bound
|
|
|
|
std::cout << "# " << o << " , " << f << std::endl;
|
|
|
|
/* as long as we have errors above machine precision */
|
|
while( f*std::pow( dt , o ) > 1E-16 )
|
|
{
|
|
x1 = x0;
|
|
t = 0.0;
|
|
stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt );
|
|
A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] );
|
|
phi = std::asin(x1[0]/A) - t;
|
|
// now we do the actual step
|
|
stepper.do_step( osc() , x1 , t , dt );
|
|
// only examine the error of the adams-bashforth-moulton step, not the initialization
|
|
std::cout << dt << '\t' << std::abs( A*sin(t+dt+phi) - x1[0] ) << std::endl;
|
|
dt *= 0.5;
|
|
}
|
|
}
|