WSJT-X/boost/libs/numeric/odeint/examples/resizing_lattice.cpp

170 lines
5.5 KiB
C++

/*
* resizing_lattice.cpp
*
* Demonstrates the usage of resizing of the state type during integration.
* Examplary system is a strongly nonlinear, disordered Hamiltonian lattice
* where the spreading of energy is investigated
*
* Copyright 2011-2012 Mario Mulansky
* Copyright 2012-2013 Karsten Ahnert
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
*/
#include <iostream>
#include <utility>
#include <boost/numeric/odeint.hpp>
#include <boost/ref.hpp>
#include <boost/random.hpp>
using namespace std;
using namespace boost::numeric::odeint;
//[ resizing_lattice_system_class
typedef vector< double > coord_type;
typedef pair< coord_type , coord_type > state_type;
struct compacton_lattice
{
const int m_max_N;
const double m_beta;
int m_pot_start_index;
vector< double > m_pot;
compacton_lattice( int max_N , double beta , int pot_start_index )
: m_max_N( max_N ) , m_beta( beta ) , m_pot_start_index( pot_start_index ) , m_pot( max_N )
{
srand( time( NULL ) );
// fill random potential with iid values from [0,1]
boost::mt19937 rng;
boost::uniform_real<> unif( 0.0 , 1.0 );
boost::variate_generator< boost::mt19937&, boost::uniform_real<> > gen( rng , unif );
generate( m_pot.begin() , m_pot.end() , gen );
}
void operator()( const coord_type &q , coord_type &dpdt )
{
// calculate dpdt = -dH/dq of this hamiltonian system
// dp_i/dt = - V_i * q_i^3 - beta*(q_i - q_{i-1})^3 + beta*(q_{i+1} - q_i)^3
const int N = q.size();
double diff = q[0] - q[N-1];
for( int i=0 ; i<N ; ++i )
{
dpdt[i] = - m_pot[m_pot_start_index+i] * q[i]*q[i]*q[i] -
m_beta * diff*diff*diff;
diff = q[(i+1) % N] - q[i];
dpdt[i] += m_beta * diff*diff*diff;
}
}
void energy_distribution( const coord_type &q , const coord_type &p , coord_type &energies )
{
// computes the energy per lattice site normalized by total energy
const size_t N = q.size();
double en = 0.0;
for( size_t i=0 ; i<N ; i++ )
{
const double diff = q[(i+1) % N] - q[i];
energies[i] = p[i]*p[i]/2.0
+ m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i]/4.0
+ m_beta/4.0 * diff*diff*diff*diff;
en += energies[i];
}
en = 1.0/en;
for( size_t i=0 ; i<N ; i++ )
{
energies[i] *= en;
}
}
double energy( const coord_type &q , const coord_type &p )
{
// calculates the total energy of the excitation
const size_t N = q.size();
double en = 0.0;
for( size_t i=0 ; i<N ; i++ )
{
const double diff = q[(i+1) % N] - q[i];
en += p[i]*p[i]/2.0
+ m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i] / 4.0
+ m_beta/4.0 * diff*diff*diff*diff;
}
return en;
}
void change_pot_start( const int delta )
{
m_pot_start_index += delta;
}
};
//]
//[ resizing_lattice_resize_function
void do_resize( coord_type &q , coord_type &p , coord_type &distr , const int N )
{
q.resize( N );
p.resize( N );
distr.resize( N );
}
//]
const int max_N = 1024;
const double beta = 1.0;
int main()
{
//[ resizing_lattice_initialize
//start with 60 sites
const int N_start = 60;
coord_type q( N_start , 0.0 );
q.reserve( max_N );
coord_type p( N_start , 0.0 );
p.reserve( max_N );
// start with uniform momentum distribution over 20 sites
fill( p.begin()+20 , p.end()-20 , 1.0/sqrt(20.0) );
coord_type distr( N_start , 0.0 );
distr.reserve( max_N );
// create the system
compacton_lattice lattice( max_N , beta , (max_N-N_start)/2 );
//create the stepper, note that we use an always_resizer because state size might change during steps
typedef symplectic_rkn_sb3a_mclachlan< coord_type , coord_type , double , coord_type , coord_type , double ,
range_algebra , default_operations , always_resizer > hamiltonian_stepper;
hamiltonian_stepper stepper;
hamiltonian_stepper::state_type state = make_pair( q , p );
//]
//[ resizing_lattice_steps_loop
double t = 0.0;
const double dt = 0.1;
const int steps = 10000;
for( int step = 0 ; step < steps ; ++step )
{
stepper.do_step( boost::ref(lattice) , state , t , dt );
lattice.energy_distribution( state.first , state.second , distr );
if( distr[10] > 1E-150 )
{
do_resize( state.first , state.second , distr , state.first.size()+20 );
rotate( state.first.begin() , state.first.end()-20 , state.first.end() );
rotate( state.second.begin() , state.second.end()-20 , state.second.end() );
lattice.change_pot_start( -20 );
cout << t << ": resized left to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
}
if( distr[distr.size()-10] > 1E-150 )
{
do_resize( state.first , state.second , distr , state.first.size()+20 );
cout << t << ": resized right to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
}
t += dt;
}
//]
cout << "final lattice size: " << distr.size() << ", final energy: " << lattice.energy( state.first , state.second ) << endl;
}