mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-12-02 09:05:13 -05:00
253 lines
12 KiB
HTML
253 lines
12 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
|
|
"http://www.w3.org/TR/html4/loose.dtd">
|
|
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Language" content="en-us">
|
|
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
|
|
<link rel="stylesheet" type="text/css" href="../../../../boost.css">
|
|
|
|
<title>Checking policies</title>
|
|
</head>
|
|
|
|
<body>
|
|
<h1>Checking policies</h1>
|
|
|
|
<p>A checking policy controls how the <code>interval</code> class will deal
|
|
with special cases like: empty intervals, infinite numbers, invalid
|
|
values.</p>
|
|
|
|
<p>For example, let's consider <code>operator+(interval, T)</code>. The
|
|
second argument could be an invalid value (for a floating-point number, it
|
|
is a NaN). What to do in such a case? First, we could say that the second
|
|
argument can never be an invalid number. Second, we could also say such a
|
|
situation can arise but is forbidden. Third, we could allow such values and
|
|
generate an empty interval when encountered. And there is many other
|
|
possibilities.</p>
|
|
|
|
<p>It is the reason why such a policy is used: there is a lot of
|
|
interesting behaviors and it would be sad to arbitrarily select one of
|
|
these.</p>
|
|
|
|
<h2>Requirements</h2>
|
|
|
|
<p>The checking class should satisfy the following requirement (in the form
|
|
of an interface):</p>
|
|
<pre>
|
|
/* requirements for checking policy */
|
|
struct checking
|
|
{
|
|
static T pos_inf();
|
|
static T neg_inf();
|
|
static T nan();
|
|
static bool is_nan(const T&);
|
|
static T empty_lower();
|
|
static T empty_upper();
|
|
static bool is_empty(const T&, const T&);
|
|
};
|
|
</pre>
|
|
|
|
<p>The first two functions, <code>pos_inf</code> and <code>neg_inf</code>,
|
|
are invoked each time the library has to create the infinite bound of an
|
|
interval. For example, <code>interval::whole</code> computes
|
|
<code>interval(checking::neg_inf(), checking::pos_inf())</code>. If
|
|
infinite values are allowed and
|
|
<code>std::numeric_limits<T>::infinity()</code> returns a correct
|
|
value, such a value can be used.</p>
|
|
|
|
<p>Next comes <code>nan</code>. This function is used each time a function
|
|
need to return a value of type <code>T</code> but is unable to compute it.
|
|
It only happens when one of the arguments of the function is invalid. For
|
|
example, if you ask what the median value of an empty interval is,
|
|
<code>nan</code> will be used. But please remember: <code>lower</code> and
|
|
<code>upper</code> directly return the value stocked in the interval; so,
|
|
if the interval is empty, <code>lower</code> will not answer
|
|
<code>by</code> a call to <code>checking::nan</code> (but will return the
|
|
same value than <code>checking::empty_lower</code> could return).</p>
|
|
|
|
<p><code>empty_lower</code> and <code>empty_upper</code> respectively
|
|
return the lower and upper bound of the empty interval. There is no
|
|
requirements for <code>empty_lower</code> and <code>empty_upper</code> to
|
|
return the same value than <code>checking::nan</code>. For example, if the
|
|
type <code>T</code> does not have any invalid value, the
|
|
<code>empty_</code> functions can return the [1;0] interval.</p>
|
|
|
|
<p><code>is_nan</code> is used to test if a value of type <code>T</code> is
|
|
invalid or not. <code>is_empty</code> tests if the interval formed by the
|
|
two arguments is empty or not. Such tests will generally be at the
|
|
beginning of each function which involves an argument of type
|
|
<code>T</code>. If one of the inputs is declared invalid, the the function
|
|
will try to produce an invalid value or an input interval.</p>
|
|
|
|
<h2>Synopsis</h2>
|
|
<pre>
|
|
namespace boost {
|
|
namespace numeric {
|
|
namespace interval_lib {
|
|
|
|
template<class T>
|
|
struct checking_base;
|
|
template<class T, class Checking = checking_base<T>, class Exception = exception_create_empty<T> >
|
|
struct checking_no_empty;
|
|
template<class T, class Checking = checking_base<T> >
|
|
struct checking_no_nan;
|
|
template<class T, class Checking = checking_base<T>, class Exception = exception_invalid_number<T> >
|
|
struct checking_catch_nan;
|
|
|
|
template<class T> struct exception_create_empty { T operator()(); };
|
|
template<class T> struct exception_invalid_number { void operator()(); };
|
|
|
|
} // namespace numeric
|
|
} // namespace interval_lib
|
|
} // namespace boost
|
|
</pre>
|
|
|
|
<h2>Predefined classes</h2>
|
|
|
|
<p>In order to simplify the customization of the policy, some templates are
|
|
already defined in the library.</p>
|
|
|
|
<p>First of all, there is <code>checking_base</code>. Thanks to the
|
|
information provided by <code>std::numeric_limits<T></code>, this
|
|
class is able to generate a base for the policy. If <code>T</code> has
|
|
quiet NaNs (as said by <code>numeric_limits::has_quiet_NaN</code>), then
|
|
the value is used for <code>nan</code>, <code>empty_lower</code>,
|
|
<code>empty_upper</code>; and a basic test is used for <code>is_nan</code>
|
|
(it is <code>x!=x</code>). If <code>T</code> does not have quiet NaNs, then
|
|
<code>nan</code> is an <code>assert(false)</code>, the empty interval is
|
|
[1,0], and <code>is_nan</code> always return <code>false</code>. As for
|
|
<code>nan</code>, <code>pos_inf</code> returns
|
|
<code>numeric_limits::infinity()</code> if possible, or is an
|
|
<code>assert(false</code>) otherwise. <code>neg_inf</code> returns the
|
|
opposite. Finally, <code>is_empty(T l,T u)</code> is always defined by
|
|
<code>!(l<=u)</code>.</p>
|
|
|
|
<p>Next comes <code>checking_no_empty</code>. Using it means that each time
|
|
an empty interval should be produced (by <code>empty_lower</code> and
|
|
<code>empty_upper</code>), the function object given by the
|
|
<code>Exception</code> argument of the template is invoked and the value it
|
|
returns is propagated. So, if <code>Exception</code> is appropriately
|
|
defined (for example it could throw an exception, hence the name of the
|
|
argument), you can be sure no empty interval will ever be created. So
|
|
<code>is_empty</code> will always return <code>false</code> (since there is
|
|
no need to test for an empty interval). And as explained before, in that
|
|
case we can also replace <code>nan</code> by an <code>assert(false)</code>;
|
|
you will be sure no invalid number will ever be produced. If this template
|
|
is not used, it implicitly means that all the functions can produce empty
|
|
intervals and they correctly deal with empty interval arguments.</p>
|
|
|
|
<p>Finally there are <code>checking_no_nan</code> and
|
|
<code>checking_catch_nan</code>. The first one expresses the functions of
|
|
the library will never get an invalid number as argument. So
|
|
<code>is_nan</code> will only return <code>false</code>. The other one
|
|
means the arguments can be an invalid number but in that case,
|
|
<code>is_nan</code> will call the function object <code>Exception</code>
|
|
and return <code>false</code>. Indeed, this template means invalid numbers
|
|
should never make their way through to the body of the function. If none of
|
|
this two templates is used, it implicitly means that all the functions can
|
|
get invalid number arguments and they will correctly deal with them.</p>
|
|
|
|
<p><code>exception_create_empty</code> throws
|
|
<code>std::runtime_error</code> with the message <code>"boost::interval:
|
|
empty interval created"</code> and <code>exception_invalid_number</code>
|
|
throws <code>std::invalid_argument</code> with the message
|
|
<code>"boost::interval: invalid number"</code>.</p>
|
|
|
|
<h2>Customizing your own checking policy</h2>
|
|
|
|
<p>In order to define a suitable policy, you need to correctly say what you
|
|
expect from your interval class. First of all, are you interested in
|
|
getting empty intervals at the end of a calculus? If you do not want to
|
|
obtain empty intervals, <code>empty_lower</code> and
|
|
<code>empty_upper</code> have to fail when invoked (they can throw an
|
|
exception, set a flag, etc). However, if no function is able to produce an
|
|
empty interval, it is no more necessary to do the test, so
|
|
<code>is_empty</code> may always return <code>false</code>. In this case, a
|
|
good compiler will do a lot of optimizations.</p>
|
|
|
|
<p>You could also be interested in getting empty intervals at the end of
|
|
the calculus. For example, if you need to transform an array of unsure
|
|
values (or intervals) in a new array of intervals, you may not want to stop
|
|
the conversion at the first encountered problem. So
|
|
<code>empty_lower</code> and <code>empty_upper</code> need to return
|
|
suitable values in order to define an empty interval (you can use an upper
|
|
bound which is not greater or equal than the lower bound for example); and
|
|
<code>is_empty</code> must be able to distinguish empty intervals from the
|
|
valid intervals.</p>
|
|
|
|
<p>Another important question is: is it possible that some base numbers
|
|
(objects of type <code>T</code>) are invalid? And if it is possible, are
|
|
they allowed or not ? If it is not possible, no test is necessary;
|
|
<code>is_nan</code> may always return <code>false</code>. In this case too,
|
|
a good compiler will do a lot of optimizations. If function arguments can
|
|
hold invalid numbers, two cases must be considered according to whether
|
|
they are allowed or not. If they are allowed, <code>is_nan</code> just has
|
|
to test if they are invalid or not. If they are forbidden,
|
|
<code>is_nan</code> should fail (exception, assert, etc.) when invoked on
|
|
an invalid argument and return <code>false</code> otherwise. The value
|
|
returned by <code>nan</code> does not have any interest since the interval
|
|
functions are guaranteed not to produce invalid interval bounds unless the
|
|
user passes invalid numbers to the constructors. So you can put an assert
|
|
inside if you do not trust the library. :-)</p>
|
|
|
|
<p>And finally, you need to decide what to do with <code>nan</code> if it
|
|
has not already been decided at the beginning, and with
|
|
<code>pos_inf</code> and <code>neg_inf</code>. These functions should
|
|
return a value or start an exceptional behavior (especially if the base
|
|
type does not have corresponding values).</p>
|
|
|
|
<h2>Some examples</h2>
|
|
|
|
<ul>
|
|
<li>If you need a checking policy that allows the library to correctly
|
|
manipulate data, even if they contain invalid numbers and empty
|
|
intervals, then <code>checking_base<T></code> is a
|
|
possibility.</li>
|
|
|
|
<li>If you do not want empty intervals to be created and are not sure all
|
|
the numbers are valid, then <code>checking_catch_nan<T,
|
|
checking_no_empty<T> ></code> can help you.</li>
|
|
|
|
<li>If all the numbers will be valid and if no empty interval is supposed
|
|
to be created (or if you do not want them to be created), then you can
|
|
use <code>checking_no_nan<T, checking_no_empty<T> ></code>.
|
|
Please note that if <code>T</code> does not have a way to represent
|
|
invalid numbers, then this policy will behave the same way as
|
|
<code>checking_no_empty<T></code>. This is the default policy and
|
|
it is also called <code>interval_lib::checking_strict</code>.</li>
|
|
|
|
<li>If all numerical data are valid but the algorithm can produce and
|
|
manipulate empty intervals, then <code>checking_no_nan<T></code>
|
|
should be used.</li>
|
|
|
|
<li>Similarly, if invalid data have to be signaled and the algorithm can
|
|
manipulate empty intervals, the <code>checking_catch_nan<T></code>
|
|
is a solution.</li>
|
|
|
|
<li>If you do not mind having undefined results when an empty interval or
|
|
an interval number is produced, your best bet is to create your own
|
|
policy by overloading <code>checking_base</code> and modifying
|
|
<code>is_nan</code> et <code>is_empty</code> in order for them to always
|
|
return <code>false</code>. It is probably the fastest checking policy
|
|
available; however, it suffers from its deficient security.</li>
|
|
</ul>
|
|
<hr>
|
|
|
|
<p><a href="http://validator.w3.org/check?uri=referer"><img border="0" src=
|
|
"../../../../doc/images/valid-html401.png" alt="Valid HTML 4.01 Transitional"
|
|
height="31" width="88"></a></p>
|
|
|
|
<p>Revised
|
|
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%Y-%m-%d" startspan -->2006-12-24<!--webbot bot="Timestamp" endspan i-checksum="12172" --></p>
|
|
|
|
<p><i>Copyright © 2002 Guillaume Melquiond, Sylvain Pion, Hervé
|
|
Brönnimann, Polytechnic University<br>
|
|
Copyright © 2003-2004 Guillaume Melquiond</i></p>
|
|
|
|
<p><i>Distributed under the Boost Software License, Version 1.0. (See
|
|
accompanying file <a href="../../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a>
|
|
or copy at <a href=
|
|
"http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p>
|
|
</body>
|
|
</html>
|