mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright John Maddock 2006
 | 
						|
// Copyright Paul A. Bristow 2010
 | 
						|
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#  pragma warning(disable: 4512) // assignment operator could not be generated.
 | 
						|
#  pragma warning(disable: 4510) // default constructor could not be generated.
 | 
						|
#  pragma warning(disable: 4610) // can never be instantiated - user defined constructor required.
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
using std::cout; using std::endl;
 | 
						|
#include <iomanip>
 | 
						|
using std::fixed; using std::left; using std::right; using std::right; using std::setw;
 | 
						|
using std::setprecision;
 | 
						|
 | 
						|
#include <boost/math/distributions/binomial.hpp>
 | 
						|
 | 
						|
void confidence_limits_on_frequency(unsigned trials, unsigned successes)
 | 
						|
{
 | 
						|
   //
 | 
						|
   // trials = Total number of trials.
 | 
						|
   // successes = Total number of observed successes.
 | 
						|
   //
 | 
						|
   // Calculate confidence limits for an observed
 | 
						|
   // frequency of occurrence that follows a binomial distribution.
 | 
						|
   //
 | 
						|
   //using namespace std; // Avoid
 | 
						|
   // using namespace boost::math; // potential name ambiguity with std <random>
 | 
						|
   using boost::math::binomial_distribution;
 | 
						|
 | 
						|
   // Print out general info:
 | 
						|
   cout <<
 | 
						|
      "___________________________________________\n"
 | 
						|
      "2-Sided Confidence Limits For Success Ratio\n"
 | 
						|
      "___________________________________________\n\n";
 | 
						|
   cout << setprecision(7);
 | 
						|
   cout << setw(40) << left << "Number of Observations" << "=  " << trials << "\n";
 | 
						|
   cout << setw(40) << left << "Number of successes" << "=  " << successes << "\n";
 | 
						|
   cout << setw(40) << left << "Sample frequency of occurrence" << "=  " << double(successes) / trials << "\n";
 | 
						|
   //
 | 
						|
   // Define a table of significance levels:
 | 
						|
   //
 | 
						|
   double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
 | 
						|
   //
 | 
						|
   // Print table header:
 | 
						|
   //
 | 
						|
   cout << "\n\n"
 | 
						|
           "_______________________________________________________________________\n"
 | 
						|
           "Confidence        Lower CP       Upper CP       Lower JP       Upper JP\n"
 | 
						|
           " Value (%)        Limit          Limit          Limit          Limit\n"
 | 
						|
           "_______________________________________________________________________\n";
 | 
						|
   //
 | 
						|
   // Now print out the data for the table rows.
 | 
						|
   //
 | 
						|
   for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
 | 
						|
   {
 | 
						|
      // Confidence value:
 | 
						|
      cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
 | 
						|
      // Calculate Clopper Pearson bounds:
 | 
						|
      double l = binomial_distribution<>::find_lower_bound_on_p(trials, successes, alpha[i]/2);
 | 
						|
      double u = binomial_distribution<>::find_upper_bound_on_p(trials, successes, alpha[i]/2);
 | 
						|
      // Print Clopper Pearson Limits:
 | 
						|
      cout << fixed << setprecision(5) << setw(15) << right << l;
 | 
						|
      cout << fixed << setprecision(5) << setw(15) << right << u;
 | 
						|
      // Calculate Jeffreys Prior Bounds:
 | 
						|
      l = binomial_distribution<>::find_lower_bound_on_p(trials, successes, alpha[i]/2, binomial_distribution<>::jeffreys_prior_interval);
 | 
						|
      u = binomial_distribution<>::find_upper_bound_on_p(trials, successes, alpha[i]/2, binomial_distribution<>::jeffreys_prior_interval);
 | 
						|
      // Print Jeffreys Prior Limits:
 | 
						|
      cout << fixed << setprecision(5) << setw(15) << right << l;
 | 
						|
      cout << fixed << setprecision(5) << setw(15) << right << u << std::endl;
 | 
						|
   }
 | 
						|
   cout << endl;
 | 
						|
} // void confidence_limits_on_frequency()
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
   confidence_limits_on_frequency(20, 4);
 | 
						|
   confidence_limits_on_frequency(200, 40);
 | 
						|
   confidence_limits_on_frequency(2000, 400);
 | 
						|
 | 
						|
   return 0;
 | 
						|
} // int main()
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
------ Build started: Project: binomial_confidence_limits, Configuration: Debug Win32 ------
 | 
						|
Compiling...
 | 
						|
binomial_confidence_limits.cpp
 | 
						|
Linking...
 | 
						|
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\binomial_confidence_limits.exe"
 | 
						|
___________________________________________
 | 
						|
2-Sided Confidence Limits For Success Ratio
 | 
						|
___________________________________________
 | 
						|
 | 
						|
Number of Observations                  =  20
 | 
						|
Number of successes                     =  4
 | 
						|
Sample frequency of occurrence          =  0.2
 | 
						|
 | 
						|
 | 
						|
_______________________________________________________________________
 | 
						|
Confidence        Lower CP       Upper CP       Lower JP       Upper JP
 | 
						|
 Value (%)        Limit          Limit          Limit          Limit
 | 
						|
_______________________________________________________________________
 | 
						|
    50.000        0.12840        0.29588        0.14974        0.26916
 | 
						|
    75.000        0.09775        0.34633        0.11653        0.31861
 | 
						|
    90.000        0.07135        0.40103        0.08734        0.37274
 | 
						|
    95.000        0.05733        0.43661        0.07152        0.40823
 | 
						|
    99.000        0.03576        0.50661        0.04655        0.47859
 | 
						|
    99.900        0.01905        0.58632        0.02634        0.55960
 | 
						|
    99.990        0.01042        0.64997        0.01530        0.62495
 | 
						|
    99.999        0.00577        0.70216        0.00901        0.67897
 | 
						|
 | 
						|
___________________________________________
 | 
						|
2-Sided Confidence Limits For Success Ratio
 | 
						|
___________________________________________
 | 
						|
 | 
						|
Number of Observations                  =  200
 | 
						|
Number of successes                     =  40
 | 
						|
Sample frequency of occurrence          =  0.2000000
 | 
						|
 | 
						|
 | 
						|
_______________________________________________________________________
 | 
						|
Confidence        Lower CP       Upper CP       Lower JP       Upper JP
 | 
						|
 Value (%)        Limit          Limit          Limit          Limit
 | 
						|
_______________________________________________________________________
 | 
						|
    50.000        0.17949        0.22259        0.18190        0.22001
 | 
						|
    75.000        0.16701        0.23693        0.16934        0.23429
 | 
						|
    90.000        0.15455        0.25225        0.15681        0.24956
 | 
						|
    95.000        0.14689        0.26223        0.14910        0.25951
 | 
						|
    99.000        0.13257        0.28218        0.13468        0.27940
 | 
						|
    99.900        0.11703        0.30601        0.11902        0.30318
 | 
						|
    99.990        0.10489        0.32652        0.10677        0.32366
 | 
						|
    99.999        0.09492        0.34485        0.09670        0.34197
 | 
						|
 | 
						|
___________________________________________
 | 
						|
2-Sided Confidence Limits For Success Ratio
 | 
						|
___________________________________________
 | 
						|
 | 
						|
Number of Observations                  =  2000
 | 
						|
Number of successes                     =  400
 | 
						|
Sample frequency of occurrence          =  0.2000000
 | 
						|
 | 
						|
 | 
						|
_______________________________________________________________________
 | 
						|
Confidence        Lower CP       Upper CP       Lower JP       Upper JP
 | 
						|
 Value (%)        Limit          Limit          Limit          Limit
 | 
						|
_______________________________________________________________________
 | 
						|
    50.000        0.19382        0.20638        0.19406        0.20613
 | 
						|
    75.000        0.18965        0.21072        0.18990        0.21047
 | 
						|
    90.000        0.18537        0.21528        0.18561        0.21503
 | 
						|
    95.000        0.18267        0.21821        0.18291        0.21796
 | 
						|
    99.000        0.17745        0.22400        0.17769        0.22374
 | 
						|
    99.900        0.17150        0.23079        0.17173        0.23053
 | 
						|
    99.990        0.16658        0.23657        0.16681        0.23631
 | 
						|
    99.999        0.16233        0.24169        0.16256        0.24143
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 |