mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-26 14:18:38 -05:00
450 lines
22 KiB
C++
450 lines
22 KiB
C++
// Copyright John Maddock 2015
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
|
|
// Note that this file contains Quickbook mark-up as well as code
|
|
// and comments, don't change any of the special comment mark-ups!
|
|
// This program also writes files in Quickbook tables mark-up format.
|
|
|
|
#include <boost/cstdlib.hpp>
|
|
#include <boost/config.hpp>
|
|
#include <boost/array.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
#include <boost/math/special_functions/ellint_1.hpp>
|
|
#include <boost/math/special_functions/ellint_2.hpp>
|
|
template <class T>
|
|
struct cbrt_functor_noderiv
|
|
{
|
|
// cube root of x using only function - no derivatives.
|
|
cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
|
|
{ /* Constructor just stores value a to find root of. */
|
|
}
|
|
T operator()(T const& x)
|
|
{
|
|
T fx = x*x*x - a; // Difference (estimate x^3 - a).
|
|
return fx;
|
|
}
|
|
private:
|
|
T a; // to be 'cube_rooted'.
|
|
};
|
|
//] [/root_finding_noderiv_1
|
|
|
|
template <class T>
|
|
boost::uintmax_t cbrt_noderiv(T x, T guess)
|
|
{
|
|
// return cube root of x using bracket_and_solve (no derivatives).
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For bracket_and_solve_root.
|
|
|
|
T factor = 2; // How big steps to take when searching.
|
|
|
|
const boost::uintmax_t maxit = 20; // Limit to maximum iterations.
|
|
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
|
|
bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
|
|
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
// Some fraction of digits is used to control how accurate to try to make the result.
|
|
int get_digits = digits - 3; // We have to have a non-zero interval at each step, so
|
|
// maximum accuracy is digits - 1. But we also have to
|
|
// allow for inaccuracy in f(x), otherwise the last few
|
|
// iterations just thrash around.
|
|
eps_tolerance<T> tol(get_digits); // Set the tolerance.
|
|
bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
|
|
return it;
|
|
}
|
|
|
|
template <class T>
|
|
struct cbrt_functor_deriv
|
|
{ // Functor also returning 1st derivative.
|
|
cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
|
|
{ // Constructor stores value a to find root of,
|
|
// for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.
|
|
}
|
|
std::pair<T, T> operator()(T const& x)
|
|
{
|
|
// Return both f(x) and f'(x).
|
|
T fx = x*x*x - a; // Difference (estimate x^3 - value).
|
|
T dx = 3 * x*x; // 1st derivative = 3x^2.
|
|
return std::make_pair(fx, dx); // 'return' both fx and dx.
|
|
}
|
|
private:
|
|
T a; // Store value to be 'cube_rooted'.
|
|
};
|
|
|
|
template <class T>
|
|
boost::uintmax_t cbrt_deriv(T x, T guess)
|
|
{
|
|
// return cube root of x using 1st derivative and Newton_Raphson.
|
|
using namespace boost::math::tools;
|
|
T min = guess / 100; // We don't really know what this should be!
|
|
T max = guess * 100; // We don't really know what this should be!
|
|
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
int get_digits = static_cast<int>(digits * 0.6); // Accuracy doubles with each step, so stop when we have
|
|
// just over half the digits correct.
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
|
|
return it;
|
|
}
|
|
|
|
template <class T>
|
|
struct cbrt_functor_2deriv
|
|
{
|
|
// Functor returning both 1st and 2nd derivatives.
|
|
cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
|
|
{ // Constructor stores value a to find root of, for example:
|
|
// calling cbrt_functor_2deriv<T>(x) to get cube root of x,
|
|
}
|
|
std::tuple<T, T, T> operator()(T const& x)
|
|
{
|
|
// Return both f(x) and f'(x) and f''(x).
|
|
T fx = x*x*x - a; // Difference (estimate x^3 - value).
|
|
T dx = 3 * x*x; // 1st derivative = 3x^2.
|
|
T d2x = 6 * x; // 2nd derivative = 6x.
|
|
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
|
|
}
|
|
private:
|
|
T a; // to be 'cube_rooted'.
|
|
};
|
|
|
|
template <class T>
|
|
boost::uintmax_t cbrt_2deriv(T x, T guess)
|
|
{
|
|
// return cube root of x using 1st and 2nd derivatives and Halley.
|
|
//using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools;
|
|
T min = guess / 100; // We don't really know what this should be!
|
|
T max = guess * 100; // We don't really know what this should be!
|
|
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
// digits used to control how accurate to try to make the result.
|
|
int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so stop when just
|
|
// over one third of the digits are correct.
|
|
boost::uintmax_t maxit = 20;
|
|
halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
|
|
return maxit;
|
|
}
|
|
|
|
template <class T>
|
|
boost::uintmax_t cbrt_2deriv_s(T x, T guess)
|
|
{
|
|
// return cube root of x using 1st and 2nd derivatives and Halley.
|
|
//using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools;
|
|
T min = guess / 100; // We don't really know what this should be!
|
|
T max = guess * 100; // We don't really know what this should be!
|
|
const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
// digits used to control how accurate to try to make the result.
|
|
int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so stop when just
|
|
// over one third of the digits are correct.
|
|
boost::uintmax_t maxit = 20;
|
|
schroder_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
|
|
return maxit;
|
|
}
|
|
|
|
template <typename T = double>
|
|
struct elliptic_root_functor_noderiv
|
|
{
|
|
elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
|
|
{ // Constructor just stores value a to find root of.
|
|
}
|
|
T operator()(T const& x)
|
|
{
|
|
// return the difference between required arc-length, and the calculated arc-length for an
|
|
// ellipse with radii m_radius and x:
|
|
T a = (std::max)(m_radius, x);
|
|
T b = (std::min)(m_radius, x);
|
|
T k = sqrt(1 - b * b / (a * a));
|
|
return 4 * a * boost::math::ellint_2(k) - m_arc;
|
|
}
|
|
private:
|
|
T m_arc; // length of arc.
|
|
T m_radius; // one of the two radii of the ellipse
|
|
}; // template <class T> struct elliptic_root_functor_noderiv
|
|
|
|
template <class T = double>
|
|
boost::uintmax_t elliptic_root_noderiv(T radius, T arc, T guess)
|
|
{ // return the other radius of an ellipse, given one radii and the arc-length
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For bracket_and_solve_root.
|
|
|
|
T factor = 2; // How big steps to take when searching.
|
|
|
|
const boost::uintmax_t maxit = 50; // Limit to maximum iterations.
|
|
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
|
|
bool is_rising = true; // arc-length increases if one radii increases, so function is rising
|
|
// Define a termination condition, stop when nearly all digits are correct, but allow for
|
|
// the fact that we are returning a range, and must have some inaccuracy in the elliptic integral:
|
|
eps_tolerance<T> tol(std::numeric_limits<T>::digits - 2);
|
|
// Call bracket_and_solve_root to find the solution, note that this is a rising function:
|
|
bracket_and_solve_root(elliptic_root_functor_noderiv<T>(arc, radius), guess, factor, is_rising, tol, it);
|
|
return it;
|
|
}
|
|
|
|
template <class T = double>
|
|
struct elliptic_root_functor_1deriv
|
|
{ // Functor also returning 1st derviative.
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
|
|
{ // Constructor just stores value a to find root of.
|
|
}
|
|
std::pair<T, T> operator()(T const& x)
|
|
{
|
|
// Return the difference between required arc-length, and the calculated arc-length for an
|
|
// ellipse with radii m_radius and x, plus it's derivative.
|
|
// See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
|
|
// We require two elliptic integral calls, but from these we can calculate both
|
|
// the function and it's derivative:
|
|
T a = (std::max)(m_radius, x);
|
|
T b = (std::min)(m_radius, x);
|
|
T a2 = a * a;
|
|
T b2 = b * b;
|
|
T k = sqrt(1 - b2 / a2);
|
|
T Ek = boost::math::ellint_2(k);
|
|
T Kk = boost::math::ellint_1(k);
|
|
T fx = 4 * a * Ek - m_arc;
|
|
T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
|
|
return std::make_pair(fx, dfx);
|
|
}
|
|
private:
|
|
T m_arc; // length of arc.
|
|
T m_radius; // one of the two radii of the ellipse
|
|
}; // struct elliptic_root__functor_1deriv
|
|
|
|
template <class T = double>
|
|
boost::uintmax_t elliptic_root_1deriv(T radius, T arc, T guess)
|
|
{
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For newton_raphson_iterate.
|
|
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
T min = 0; // Minimum possible value is zero.
|
|
T max = arc; // Maximum possible value is the arc length.
|
|
|
|
// Accuracy doubles at each step, so stop when just over half of the digits are
|
|
// correct, and rely on that step to polish off the remainder:
|
|
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
newton_raphson_iterate(elliptic_root_functor_1deriv<T>(arc, radius), guess, min, max, get_digits, it);
|
|
return it;
|
|
}
|
|
|
|
template <class T = double>
|
|
struct elliptic_root_functor_2deriv
|
|
{ // Functor returning both 1st and 2nd derivatives.
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {}
|
|
std::tuple<T, T, T> operator()(T const& x)
|
|
{
|
|
// Return the difference between required arc-length, and the calculated arc-length for an
|
|
// ellipse with radii m_radius and x, plus it's derivative.
|
|
// See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
|
|
// for the second derivative.
|
|
T a = (std::max)(m_radius, x);
|
|
T b = (std::min)(m_radius, x);
|
|
T a2 = a * a;
|
|
T b2 = b * b;
|
|
T k = sqrt(1 - b2 / a2);
|
|
T Ek = boost::math::ellint_2(k);
|
|
T Kk = boost::math::ellint_1(k);
|
|
T fx = 4 * a * Ek - m_arc;
|
|
T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
|
|
T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2));
|
|
return std::make_tuple(fx, dfx, dfx2);
|
|
}
|
|
private:
|
|
T m_arc; // length of arc.
|
|
T m_radius; // one of the two radii of the ellipse
|
|
};
|
|
|
|
template <class T = double>
|
|
boost::uintmax_t elliptic_root_2deriv(T radius, T arc, T guess)
|
|
{
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For halley_iterate.
|
|
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
T min = 0; // Minimum possible value is zero.
|
|
T max = arc; // radius can't be larger than the arc length.
|
|
|
|
// Accuracy triples at each step, so stop when just over one-third of the digits
|
|
// are correct, and the last iteration will polish off the remaining digits:
|
|
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
halley_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
|
|
return it;
|
|
} // nth_2deriv Halley
|
|
//]
|
|
// Using 1st and 2nd derivatives using Schroder algorithm.
|
|
|
|
template <class T = double>
|
|
boost::uintmax_t elliptic_root_2deriv_s(T radius, T arc, T guess)
|
|
{ // return nth root of x using 1st and 2nd derivatives and Schroder.
|
|
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For schroder_iterate.
|
|
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
T min = 0; // Minimum possible value is zero.
|
|
T max = arc; // radius can't be larger than the arc length.
|
|
|
|
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
int get_digits = static_cast<int>(digits * 0.4);
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
schroder_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
|
|
return it;
|
|
} // T elliptic_root_2deriv_s Schroder
|
|
|
|
|
|
int main()
|
|
{
|
|
try
|
|
{
|
|
double to_root = 500;
|
|
double answer = 7.93700525984;
|
|
|
|
std::cout << "[table\n"
|
|
<< "[[Initial Guess=][-500% ([approx]1.323)][-100% ([approx]3.97)][-50% ([approx]3.96)][-20% ([approx]6.35)][-10% ([approx]7.14)][-5% ([approx]7.54)]"
|
|
"[5% ([approx]8.33)][10% ([approx]8.73)][20% ([approx]9.52)][50% ([approx]11.91)][100% ([approx]15.87)][500 ([approx]47.6)]]\n";
|
|
std::cout << "[[bracket_and_solve_root]["
|
|
<< cbrt_noderiv(to_root, answer / 6)
|
|
<< "][" << cbrt_noderiv(to_root, answer / 2)
|
|
<< "][" << cbrt_noderiv(to_root, answer - answer * 0.5)
|
|
<< "][" << cbrt_noderiv(to_root, answer - answer * 0.2)
|
|
<< "][" << cbrt_noderiv(to_root, answer - answer * 0.1)
|
|
<< "][" << cbrt_noderiv(to_root, answer - answer * 0.05)
|
|
<< "][" << cbrt_noderiv(to_root, answer + answer * 0.05)
|
|
<< "][" << cbrt_noderiv(to_root, answer + answer * 0.1)
|
|
<< "][" << cbrt_noderiv(to_root, answer + answer * 0.2)
|
|
<< "][" << cbrt_noderiv(to_root, answer + answer * 0.5)
|
|
<< "][" << cbrt_noderiv(to_root, answer + answer)
|
|
<< "][" << cbrt_noderiv(to_root, answer + answer * 5) << "]]\n";
|
|
|
|
std::cout << "[[newton_iterate]["
|
|
<< cbrt_deriv(to_root, answer / 6)
|
|
<< "][" << cbrt_deriv(to_root, answer / 2)
|
|
<< "][" << cbrt_deriv(to_root, answer - answer * 0.5)
|
|
<< "][" << cbrt_deriv(to_root, answer - answer * 0.2)
|
|
<< "][" << cbrt_deriv(to_root, answer - answer * 0.1)
|
|
<< "][" << cbrt_deriv(to_root, answer - answer * 0.05)
|
|
<< "][" << cbrt_deriv(to_root, answer + answer * 0.05)
|
|
<< "][" << cbrt_deriv(to_root, answer + answer * 0.1)
|
|
<< "][" << cbrt_deriv(to_root, answer + answer * 0.2)
|
|
<< "][" << cbrt_deriv(to_root, answer + answer * 0.5)
|
|
<< "][" << cbrt_deriv(to_root, answer + answer)
|
|
<< "][" << cbrt_deriv(to_root, answer + answer * 5) << "]]\n";
|
|
|
|
std::cout << "[[halley_iterate]["
|
|
<< cbrt_2deriv(to_root, answer / 6)
|
|
<< "][" << cbrt_2deriv(to_root, answer / 2)
|
|
<< "][" << cbrt_2deriv(to_root, answer - answer * 0.5)
|
|
<< "][" << cbrt_2deriv(to_root, answer - answer * 0.2)
|
|
<< "][" << cbrt_2deriv(to_root, answer - answer * 0.1)
|
|
<< "][" << cbrt_2deriv(to_root, answer - answer * 0.05)
|
|
<< "][" << cbrt_2deriv(to_root, answer + answer * 0.05)
|
|
<< "][" << cbrt_2deriv(to_root, answer + answer * 0.1)
|
|
<< "][" << cbrt_2deriv(to_root, answer + answer * 0.2)
|
|
<< "][" << cbrt_2deriv(to_root, answer + answer * 0.5)
|
|
<< "][" << cbrt_2deriv(to_root, answer + answer)
|
|
<< "][" << cbrt_2deriv(to_root, answer + answer * 5) << "]]\n";
|
|
|
|
std::cout << "[[schr'''ö'''der_iterate]["
|
|
<< cbrt_2deriv_s(to_root, answer / 6)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer / 2)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer - answer * 0.5)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer - answer * 0.2)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer - answer * 0.1)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer - answer * 0.05)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer + answer * 0.05)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer + answer * 0.1)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer + answer * 0.2)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer + answer * 0.5)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer + answer)
|
|
<< "][" << cbrt_2deriv_s(to_root, answer + answer * 5) << "]]\n]\n\n";
|
|
|
|
|
|
double radius_a = 10;
|
|
double arc_length = 500;
|
|
double radius_b = 123.6216507967705;
|
|
|
|
std::cout << std::setprecision(4) << "[table\n"
|
|
<< "[[Initial Guess=][-500% ([approx]" << radius_b / 6 << ")][-100% ([approx]" << radius_b / 2 << ")][-50% ([approx]"
|
|
<< radius_b - radius_b * 0.5 << ")][-20% ([approx]" << radius_b - radius_b * 0.2 << ")][-10% ([approx]" << radius_b - radius_b * 0.1 << ")][-5% ([approx]" << radius_b - radius_b * 0.05 << ")]"
|
|
"[5% ([approx]" << radius_b + radius_b * 0.05 << ")][10% ([approx]" << radius_b + radius_b * 0.1 << ")][20% ([approx]" << radius_b + radius_b * 0.2 << ")][50% ([approx]" << radius_b + radius_b * 0.5
|
|
<< ")][100% ([approx]" << radius_b + radius_b << ")][500 ([approx]" << radius_b + radius_b * 5 << ")]]\n";
|
|
std::cout << "[[bracket_and_solve_root]["
|
|
<< elliptic_root_noderiv(radius_a, arc_length, radius_b / 6)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b / 2)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.5)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.2)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.1)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b - radius_b * 0.05)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.05)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.1)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.2)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 0.5)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b)
|
|
<< "][" << elliptic_root_noderiv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";
|
|
|
|
std::cout << "[[newton_iterate]["
|
|
<< elliptic_root_1deriv(radius_a, arc_length, radius_b / 6)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b / 2)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.5)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.2)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.1)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b - radius_b * 0.05)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.05)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.1)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.2)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 0.5)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b)
|
|
<< "][" << elliptic_root_1deriv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";
|
|
|
|
std::cout << "[[halley_iterate]["
|
|
<< elliptic_root_2deriv(radius_a, arc_length, radius_b / 6)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b / 2)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.5)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.2)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.1)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b - radius_b * 0.05)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.05)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.1)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.2)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 0.5)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b)
|
|
<< "][" << elliptic_root_2deriv(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n";
|
|
|
|
std::cout << "[[schr'''ö'''der_iterate]["
|
|
<< elliptic_root_2deriv_s(radius_a, arc_length, radius_b / 6)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b / 2)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.5)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.2)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.1)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b - radius_b * 0.05)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.05)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.1)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.2)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 0.5)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b)
|
|
<< "][" << elliptic_root_2deriv_s(radius_a, arc_length, radius_b + radius_b * 5) << "]]\n]\n\n";
|
|
|
|
return boost::exit_success;
|
|
}
|
|
catch(std::exception ex)
|
|
{
|
|
std::cout << "exception thrown: " << ex.what() << std::endl;
|
|
return boost::exit_failure;
|
|
}
|
|
} // int main()
|
|
|