mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			356 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//  Copyright (c) 2007 John Maddock
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
//
 | 
						|
// Computes test data for the various bessel functions using
 | 
						|
// archived - deliberately naive - version of the code.
 | 
						|
// We'll rely on the high precision of mp_t to get us out of
 | 
						|
// trouble and not worry about how long the calculations take.
 | 
						|
// This provides a reasonably independent set of test data to
 | 
						|
// compare against newly added asymptotic expansions etc.
 | 
						|
//
 | 
						|
#include <fstream>
 | 
						|
 | 
						|
#include <boost/math/tools/test_data.hpp>
 | 
						|
#include <boost/math/special_functions/bessel.hpp>
 | 
						|
#include "mp_t.hpp"
 | 
						|
 | 
						|
using namespace boost::math::tools;
 | 
						|
using namespace boost::math;
 | 
						|
using namespace boost::math::detail;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
// Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
 | 
						|
// Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
 | 
						|
template <typename T>
 | 
						|
int bessel_jy_bare(T v, T x, T* J, T* Y, int kind = need_j|need_y)
 | 
						|
{
 | 
						|
    // Jv1 = J_(v+1), Yv1 = Y_(v+1), fv = J_(v+1) / J_v
 | 
						|
    // Ju1 = J_(u+1), Yu1 = Y_(u+1), fu = J_(u+1) / J_u
 | 
						|
    T u, Jv, Ju, Yv, Yv1, Yu, Yu1, fv, fu;
 | 
						|
    T W, p, q, gamma, current, prev, next;
 | 
						|
    bool reflect = false;
 | 
						|
    int n, k, s;
 | 
						|
 | 
						|
    using namespace std;
 | 
						|
    using namespace boost::math::tools;
 | 
						|
    using namespace boost::math::constants;
 | 
						|
 | 
						|
    if (v < 0)
 | 
						|
    {
 | 
						|
        reflect = true;
 | 
						|
        v = -v;                             // v is non-negative from here
 | 
						|
        kind = need_j|need_y;               // need both for reflection formula
 | 
						|
    }
 | 
						|
    n = real_cast<int>(v + 0.5L);
 | 
						|
    u = v - n;                              // -1/2 <= u < 1/2
 | 
						|
 | 
						|
    if (x < 0)
 | 
						|
    {
 | 
						|
       *J = *Y = policies::raise_domain_error<T>("",
 | 
						|
          "Real argument x=%1% must be non-negative, complex number result not supported", x, policies::policy<>());
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    if (x == 0)
 | 
						|
    {
 | 
						|
       *J = *Y = policies::raise_overflow_error<T>(
 | 
						|
          "", 0, policies::policy<>());
 | 
						|
       return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // x is positive until reflection
 | 
						|
    W = T(2) / (x * pi<T>());               // Wronskian
 | 
						|
    if (x <= 2)                           // x in (0, 2]
 | 
						|
    {
 | 
						|
       if(temme_jy(u, x, &Yu, &Yu1, policies::policy<>()))             // Temme series
 | 
						|
        {
 | 
						|
           // domain error:
 | 
						|
           *J = *Y = Yu;
 | 
						|
           return 1;
 | 
						|
        }
 | 
						|
        prev = Yu;
 | 
						|
        current = Yu1;
 | 
						|
        for (k = 1; k <= n; k++)            // forward recurrence for Y
 | 
						|
        {
 | 
						|
            next = 2 * (u + k) * current / x - prev;
 | 
						|
            prev = current;
 | 
						|
            current = next;
 | 
						|
        }
 | 
						|
        Yv = prev;
 | 
						|
        Yv1 = current;
 | 
						|
        CF1_jy(v, x, &fv, &s, policies::policy<>());                 // continued fraction CF1
 | 
						|
        Jv = W / (Yv * fv - Yv1);           // Wronskian relation
 | 
						|
    }
 | 
						|
    else                                    // x in (2, \infty)
 | 
						|
    {
 | 
						|
        // Get Y(u, x):
 | 
						|
        CF1_jy(v, x, &fv, &s, policies::policy<>());
 | 
						|
        // tiny initial value to prevent overflow
 | 
						|
        T init = sqrt(tools::min_value<T>());
 | 
						|
        prev = fv * s * init;
 | 
						|
        current = s * init;
 | 
						|
        for (k = n; k > 0; k--)             // backward recurrence for J
 | 
						|
        {
 | 
						|
            next = 2 * (u + k) * current / x - prev;
 | 
						|
            prev = current;
 | 
						|
            current = next;
 | 
						|
        }
 | 
						|
        T ratio = (s * init) / current;     // scaling ratio
 | 
						|
        // can also call CF1() to get fu, not much difference in precision
 | 
						|
        fu = prev / current;
 | 
						|
        CF2_jy(u, x, &p, &q, policies::policy<>());                  // continued fraction CF2
 | 
						|
        T t = u / x - fu;                   // t = J'/J
 | 
						|
        gamma = (p - t) / q;
 | 
						|
        Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
 | 
						|
 | 
						|
        Jv = Ju * ratio;                    // normalization
 | 
						|
 | 
						|
        Yu = gamma * Ju;
 | 
						|
        Yu1 = Yu * (u/x - p - q/gamma);
 | 
						|
 | 
						|
        // compute Y:
 | 
						|
        prev = Yu;
 | 
						|
        current = Yu1;
 | 
						|
        for (k = 1; k <= n; k++)            // forward recurrence for Y
 | 
						|
        {
 | 
						|
            next = 2 * (u + k) * current / x - prev;
 | 
						|
            prev = current;
 | 
						|
            current = next;
 | 
						|
        }
 | 
						|
        Yv = prev;
 | 
						|
    }
 | 
						|
 | 
						|
    if (reflect)
 | 
						|
    {
 | 
						|
        T z = (u + n % 2) * pi<T>();
 | 
						|
        *J = cos(z) * Jv - sin(z) * Yv;     // reflection formula
 | 
						|
        *Y = sin(z) * Jv + cos(z) * Yv;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        *J = Jv;
 | 
						|
        *Y = Yv;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int progress = 0;
 | 
						|
 | 
						|
template <class T>
 | 
						|
T cyl_bessel_j_bare(T v, T x)
 | 
						|
{
 | 
						|
   T j, y;
 | 
						|
   bessel_jy_bare(v, x, &j, &y);
 | 
						|
 | 
						|
   std::cout << progress++ << ":   J(" << v << ", " << x << ") = " << j << std::endl;
 | 
						|
 | 
						|
   if(fabs(j) > 1e30)
 | 
						|
      throw std::domain_error("");
 | 
						|
 | 
						|
   return j;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
T cyl_bessel_i_bare(T v, T x)
 | 
						|
{
 | 
						|
   using namespace std;
 | 
						|
   if(x < 0)
 | 
						|
   {
 | 
						|
      // better have integer v:
 | 
						|
      if(floor(v) == v)
 | 
						|
      {
 | 
						|
         T r = cyl_bessel_i_bare(v, -x);
 | 
						|
         if(tools::real_cast<int>(v) & 1)
 | 
						|
            r = -r;
 | 
						|
         return r;
 | 
						|
      }
 | 
						|
      else
 | 
						|
         return policies::raise_domain_error<T>(
 | 
						|
            "",
 | 
						|
            "Got x = %1%, but we need x >= 0", x, policies::policy<>());
 | 
						|
   }
 | 
						|
   if(x == 0)
 | 
						|
   {
 | 
						|
      return (v == 0) ? 1 : 0;
 | 
						|
   }
 | 
						|
   T I, K;
 | 
						|
   boost::math::detail::bessel_ik(v, x, &I, &K, 0xffff, policies::policy<>());
 | 
						|
 | 
						|
   std::cout << progress++ << ":   I(" << v << ", " << x << ") = " << I << std::endl;
 | 
						|
 | 
						|
   if(fabs(I) > 1e30)
 | 
						|
      throw std::domain_error("");
 | 
						|
 | 
						|
   return I;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
T cyl_bessel_k_bare(T v, T x)
 | 
						|
{
 | 
						|
   using namespace std;
 | 
						|
   if(x < 0)
 | 
						|
   {
 | 
						|
      return policies::raise_domain_error<T>(
 | 
						|
         "",
 | 
						|
         "Got x = %1%, but we need x > 0", x, policies::policy<>());
 | 
						|
   }
 | 
						|
   if(x == 0)
 | 
						|
   {
 | 
						|
      return (v == 0) ? policies::raise_overflow_error<T>("", 0, policies::policy<>())
 | 
						|
         : policies::raise_domain_error<T>(
 | 
						|
         "",
 | 
						|
         "Got x = %1%, but we need x > 0", x, policies::policy<>());
 | 
						|
   }
 | 
						|
   T I, K;
 | 
						|
   bessel_ik(v, x, &I, &K, 0xFFFF, policies::policy<>());
 | 
						|
 | 
						|
   std::cout << progress++ << ":   K(" << v << ", " << x << ") = " << K << std::endl;
 | 
						|
 | 
						|
   if(fabs(K) > 1e30)
 | 
						|
      throw std::domain_error("");
 | 
						|
 | 
						|
   return K;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
T cyl_neumann_bare(T v, T x)
 | 
						|
{
 | 
						|
   T j, y;
 | 
						|
   bessel_jy(v, x, &j, &y, 0xFFFF, policies::policy<>());
 | 
						|
 | 
						|
   std::cout << progress++ << ":   Y(" << v << ", " << x << ") = " << y << std::endl;
 | 
						|
 | 
						|
   if(fabs(y) > 1e30)
 | 
						|
      throw std::domain_error("");
 | 
						|
 | 
						|
   return y;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
T sph_bessel_j_bare(T v, T x)
 | 
						|
{
 | 
						|
   std::cout << progress++ << ":   j(" << v << ", " << x << ") = ";
 | 
						|
   if((v < 0) || (floor(v) != v))
 | 
						|
      throw std::domain_error("");
 | 
						|
   T r = sqrt(constants::pi<T>() / (2 * x)) * cyl_bessel_j_bare(v+0.5, x);
 | 
						|
   std::cout << r << std::endl;
 | 
						|
   return r;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
T sph_bessel_y_bare(T v, T x)
 | 
						|
{
 | 
						|
   std::cout << progress++ << ":   y(" << v << ", " << x << ") = ";
 | 
						|
   if((v < 0) || (floor(v) != v))
 | 
						|
      throw std::domain_error("");
 | 
						|
   T r = sqrt(constants::pi<T>() / (2 * x)) * cyl_neumann_bare(v+0.5, x);
 | 
						|
   std::cout << r << std::endl;
 | 
						|
   return r;
 | 
						|
}
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
   func_J = 0,
 | 
						|
   func_Y,
 | 
						|
   func_I,
 | 
						|
   func_K,
 | 
						|
   func_j,
 | 
						|
   func_y
 | 
						|
};
 | 
						|
 | 
						|
int main(int argc, char* argv[])
 | 
						|
{
 | 
						|
   std::cout << std::setprecision(17) << std::scientific;
 | 
						|
   std::cout << sph_bessel_j_bare(0., 0.1185395751953125e4) << std::endl;
 | 
						|
   std::cout << sph_bessel_j_bare(22., 0.6540834903717041015625) << std::endl;
 | 
						|
 | 
						|
   std::cout << std::setprecision(40) << std::scientific;
 | 
						|
 | 
						|
   parameter_info<mp_t> arg1, arg2;
 | 
						|
   test_data<mp_t> data;
 | 
						|
 | 
						|
   int functype = 0;
 | 
						|
   std::string letter = "J";
 | 
						|
 | 
						|
   if(argc == 2)
 | 
						|
   {
 | 
						|
      if(std::strcmp(argv[1], "--Y") == 0)
 | 
						|
      {
 | 
						|
         functype = func_Y;
 | 
						|
         letter = "Y";
 | 
						|
      }
 | 
						|
      else if(std::strcmp(argv[1], "--I") == 0)
 | 
						|
      {
 | 
						|
         functype = func_I;
 | 
						|
         letter = "I";
 | 
						|
      }
 | 
						|
      else if(std::strcmp(argv[1], "--K") == 0)
 | 
						|
      {
 | 
						|
         functype = func_K;
 | 
						|
         letter = "K";
 | 
						|
      }
 | 
						|
      else if(std::strcmp(argv[1], "--j") == 0)
 | 
						|
      {
 | 
						|
         functype = func_j;
 | 
						|
         letter = "j";
 | 
						|
      }
 | 
						|
      else if(std::strcmp(argv[1], "--y") == 0)
 | 
						|
      {
 | 
						|
         functype = func_y;
 | 
						|
         letter = "y";
 | 
						|
      }
 | 
						|
      else
 | 
						|
         assert(0);
 | 
						|
   }
 | 
						|
 | 
						|
   bool cont;
 | 
						|
   std::string line;
 | 
						|
 | 
						|
   std::cout << "Welcome.\n"
 | 
						|
      "This program will generate spot tests for the Bessel " << letter << " function\n\n";
 | 
						|
   do{
 | 
						|
      get_user_parameter_info(arg1, "v");
 | 
						|
      get_user_parameter_info(arg2, "x");
 | 
						|
      mp_t (*fp)(mp_t, mp_t);
 | 
						|
      if(functype == func_J) 
 | 
						|
         fp = cyl_bessel_j_bare;
 | 
						|
      else if(functype == func_I) 
 | 
						|
         fp = cyl_bessel_i_bare;
 | 
						|
      else if(functype == func_K) 
 | 
						|
         fp = cyl_bessel_k_bare;
 | 
						|
      else if(functype == func_Y)
 | 
						|
         fp = cyl_neumann_bare;
 | 
						|
      else if(functype == func_j)
 | 
						|
         fp = sph_bessel_j_bare;
 | 
						|
      else if(functype == func_y)
 | 
						|
         fp = sph_bessel_y_bare;
 | 
						|
      else
 | 
						|
         assert(0);
 | 
						|
 | 
						|
      data.insert(fp, arg1, arg2);
 | 
						|
 | 
						|
      std::cout << "Any more data [y/n]?";
 | 
						|
      std::getline(std::cin, line);
 | 
						|
      boost::algorithm::trim(line);
 | 
						|
      cont = (line == "y");
 | 
						|
   }while(cont);
 | 
						|
 | 
						|
   std::cout << "Enter name of test data file [default=bessel_j_data.ipp]";
 | 
						|
   std::getline(std::cin, line);
 | 
						|
   boost::algorithm::trim(line);
 | 
						|
   if(line == "")
 | 
						|
      line = "bessel_j_data.ipp";
 | 
						|
   std::ofstream ofs(line.c_str());
 | 
						|
   line.erase(line.find('.'));
 | 
						|
   ofs << std::scientific << std::setprecision(40);
 | 
						|
   write_code(ofs, data, line.c_str());
 | 
						|
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 |