mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-26 02:20:20 -04:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6926 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			738 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			738 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // main.c 
 | |
| // Word Error Rate test example for Q-ary RA codes over GF(64)
 | |
| // 
 | |
| // (c) 2016 - Nico Palermo, IV3NWV
 | |
| // 
 | |
| // Thanks to Andrea Montefusco IW0HDV for his help on adapting the sources
 | |
| // to OSs other than MS Windows
 | |
| //
 | |
| // ------------------------------------------------------------------------------
 | |
| // This file is part of the qracodes project, a Forward Error Control
 | |
| // encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
 | |
| //
 | |
| // Files in this package:
 | |
| //    main.c		 - this file
 | |
| //    normrnd.c/.h   - random gaussian number generator
 | |
| //    npfwht.c/.h    - Fast Walsh-Hadamard Transforms
 | |
| //    pdmath.c/.h    - Elementary math on probability distributions
 | |
| //    qra12_63_64_irr_b.c/.h - Tables for a QRA(12,63) irregular RA code over GF(64)
 | |
| //    qra13_64_64_irr_e.c/.h - Tables for a QRA(13,64) irregular RA code "     "
 | |
| //    qracodes.c/.h  - QRA codes encoding/decoding functions
 | |
| //
 | |
| // -------------------------------------------------------------------------------
 | |
| //
 | |
| //    qracodes is free software: you can redistribute it and/or modify
 | |
| //    it under the terms of the GNU General Public License as published by
 | |
| //    the Free Software Foundation, either version 3 of the License, or
 | |
| //    (at your option) any later version.
 | |
| //    qracodes is distributed in the hope that it will be useful,
 | |
| //    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| //    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| //    GNU General Public License for more details.
 | |
| 
 | |
| //    You should have received a copy of the GNU General Public License
 | |
| //    along with qracodes source distribution.  
 | |
| //    If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| 
 | |
| // Two codes are available for simulations in this sowftware release:
 | |
| 
 | |
| // QRA12_63_64_IRR_B: K=12 N=63 Q=64 irregular QRA code (defined in qra12_63_64_irr_b.h /.c)
 | |
| // QRA13_64_64_IRR_E: K=13 N=64 Q=64 irregular QRA code (defined in qra13_64_64_irr_b.h /.c)
 | |
| 
 | |
| // Codes with K=13 are designed to include a CRC as the 13th information symbol
 | |
| // and improve the code UER (Undetected Error Rate).
 | |
| // The CRC symbol is not sent along the channel (the codes are punctured) and the 
 | |
| // resulting code is still a (12,63) code with an effective code rate of R = 12/63. 
 | |
| 
 | |
| // ------------------------------------------------------------------------------
 | |
| 
 | |
| // OS dependent defines and includes --------------------------------------------
 | |
| 
 | |
| #if _WIN32 // note the underscore: without it, it's not msdn official!
 | |
| 	// Windows (x64 and x86)
 | |
| 	#include <windows.h>   // required only for GetTickCount(...)
 | |
| 	#include <process.h>   // _beginthread
 | |
| #endif
 | |
| 
 | |
| #if defined(__linux__)
 | |
| 
 | |
| // remove unwanted macros
 | |
| #define __cdecl
 | |
| 
 | |
| // implements Windows API
 | |
| #include <time.h>
 | |
| 
 | |
|  unsigned int GetTickCount(void) {
 | |
|     struct timespec ts;
 | |
|     unsigned int theTick = 0U;
 | |
|     clock_gettime( CLOCK_REALTIME, &ts );
 | |
|     theTick  = ts.tv_nsec / 1000000;
 | |
|     theTick += ts.tv_sec * 1000;
 | |
|     return theTick;
 | |
| }
 | |
| 
 | |
| // Convert Windows millisecond sleep
 | |
| //
 | |
| // VOID WINAPI Sleep(_In_ DWORD dwMilliseconds);
 | |
| //
 | |
| // to Posix usleep (in microseconds)
 | |
| //
 | |
| // int usleep(useconds_t usec);
 | |
| //
 | |
| #include <unistd.h>
 | |
| #define Sleep(x)  usleep(x*1000)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
 | |
| #include <pthread.h>
 | |
| #endif
 | |
| 
 | |
| #if __APPLE__
 | |
| #endif
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include "qracodes.h"		   
 | |
| #include "normrnd.h"		   // gaussian numbers generator
 | |
| #include "pdmath.h"			   // operations on probability distributions
 | |
| 
 | |
| // defined codes
 | |
| #include "qra12_63_64_irr_b.h" 
 | |
| #include "qra13_64_64_irr_e.h"  
 | |
| 
 | |
| // -----------------------------------------------------------------------------------
 | |
| 
 | |
| #define NTHREADS_MAX 160	
 | |
| 
 | |
| // channel types
 | |
| #define CHANNEL_AWGN     0
 | |
| #define CHANNEL_RAYLEIGH 1
 | |
| 
 | |
| // amount of a-priori information provided to the decoder
 | |
| #define AP_NONE 0
 | |
| #define AP_28   1
 | |
| #define AP_44   2
 | |
| #define AP_56   3
 | |
| 
 | |
| const char ap_str[4][16] = {
 | |
| 	"None",
 | |
| 	"28 bit",
 | |
| 	"44 bit",
 | |
| 	"56 bit"
 | |
| };
 | |
| 
 | |
| const char fnameout_pfx[2][64] = {
 | |
| 	"wer-awgn-",
 | |
| 	"wer-rayleigh-"
 | |
| };
 | |
| const char fnameout_sfx[4][64] = {
 | |
| 	"-ap00.txt",
 | |
| 	"-ap28.txt",
 | |
| 	"-ap44.txt",
 | |
| 	"-ap56.txt"
 | |
| };
 | |
| 
 | |
| const int ap_masks_jt65[4][13] = { 
 | |
| // Each row must be 13 entries long (to handle puntc. codes 13,64)
 | |
| // The mask of 13th symbol (crc) is alway initializated to 0
 | |
| 	// AP0  - no a-priori knowledge
 | |
| 	{   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0}, 
 | |
| 	// AP28 - 1st field known [cq ? ?] or [dst ? ?] 
 | |
| 	{0x3F,0x3F,0x3F,0x3F,0x3C,   0,   0,   0,   0,   0,   0,   0}, 
 | |
| 	// AP44 - 1st and 3rd fields known [cq ? 0] or [dst ? 0] 
 | |
| 	{0x3F,0x3F,0x3F,0x3F,0x3C,   0,   0,   0,   0,0x0F,0x3F,0x3F},  
 | |
| 	// AP56 - 1st and 2nd fields known [dst src ?] 
 | |
|     {0x3F,0x3F,0x3F,0x3F,0x3F,0x3F,0x3F,0x3F,0x3F,0x30,   0,   0}
 | |
| };
 | |
| 
 | |
| void ix_mask(const qracode *pcode, float *r, const int *mask, const int *x);
 | |
| 
 | |
| void printword(char *msg, int *x, int size)
 | |
| {
 | |
| 	int k;
 | |
| 	printf("\n%s ",msg);
 | |
| 	for (k=0;k<size;k++)
 | |
| 		printf("%02hx ",x[k]);
 | |
| 	printf("\n");
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
| 	int channel_type;
 | |
| 	float EbNodB;
 | |
| 	volatile int nt;
 | |
| 	volatile int nerrs;
 | |
| 	volatile int nerrsu;
 | |
| 	volatile int stop;
 | |
| 	volatile int done;
 | |
| 	int		ap_index;		// index to the a priori knowledge mask
 | |
| 	const qracode	*pcode;	// pointer to the code descriptor
 | |
| 	int	*x;				//[qra_K];		    input message buffer
 | |
| 	int	*y, *ydec;		//[qra_N];			encoded/decoded codewords buffers
 | |
| 	float	*qra_v2cmsg;	//[qra_NMSG*qra_M]; MP decoder v->c msg buffer 
 | |
| 	float	*qra_c2vmsg;	//[qra_NMSG*qra_M]; MP decoder c->v msg buffer
 | |
| 	float	*rp;			// [qra_N*qra_M];	received samples (real component) buffer
 | |
| 	float	*rq;			// [qra_N*qra_M];	received samples (imag component) buffer
 | |
| 	float   *chp;			//[qra_N];			channel gains (real component) buffer
 | |
| 	float	*chq;			//[qra_N];			channel gains (imag component) buffer
 | |
| 	float   *r;				//[qra_N*qra_M];	received samples (amplitude)   buffer
 | |
| 	float   *ix;			// [qra_N*qra_M];	// intrinsic information to the MP algorithm
 | |
| 	float   *ex;			// [qra_N*qra_M];	// extrinsic information from the MP algorithm
 | |
| 
 | |
| } wer_test_ds;
 | |
| 
 | |
| typedef void( __cdecl *pwer_test_thread)(wer_test_ds*);
 | |
| 
 | |
| // crc-6 generator polynomial
 | |
| // g(x) = x^6 + a5*x^5 + ... + a1*x + a0
 | |
| 
 | |
| // g(x) = x^6 + x + 1  
 | |
| #define CRC6_GEN_POL 0x30  // MSB=a0 LSB=a5    
 | |
| 
 | |
| // g(x) = x^6 + x^2 + x + 1 (as suggested by Joe. See:  https://users.ece.cmu.edu/~koopman/crc/)
 | |
| // #define CRC6_GEN_POL 0x38  // MSB=a0 LSB=a5. Simulation results are similar
 | |
| 
 | |
| int calc_crc6(int *x, int sz)
 | |
| {
 | |
| 	int k,j,t,sr = 0;
 | |
| 	for (k=0;k<sz;k++) {
 | |
| 		t = x[k];
 | |
| 		for (j=0;j<6;j++) {
 | |
| 			if ((t^sr)&0x01)
 | |
| 				sr = (sr>>1) ^ CRC6_GEN_POL;
 | |
| 			else
 | |
| 				sr = (sr>>1);
 | |
| 			t>>=1;
 | |
| 			}
 | |
| 		}
 | |
| 	return sr;
 | |
| }
 | |
| 
 | |
| void wer_test_thread(wer_test_ds *pdata)
 | |
| {
 | |
| 	const qracode *pcode=pdata->pcode;
 | |
| 	const int qra_K = pcode->K;
 | |
| 	const int qra_N = pcode->N;
 | |
| 	const int qra_M = pcode->M;
 | |
| 	const int qra_m = pcode->m;
 | |
| 	const int NSAMPLES = pcode->N*pcode->M;
 | |
| 
 | |
| 	const float No = 1.0f;		// noise spectral density
 | |
| 	const float sigma   = (float)sqrt(No/2.0f);	// std dev of noise I/Q components
 | |
| 	const float sigmach = (float)sqrt(1/2.0f);	// std dev of channel I/Q gains
 | |
| 
 | |
| 	// Eb/No value for which we optimize the bessel metric
 | |
| 	const float EbNodBMetric = 2.8f; 
 | |
| 	const float EbNoMetric   = (float)pow(10,EbNodBMetric/10);
 | |
| 
 | |
| 	int k,t,j,diff;
 | |
| 	float R;
 | |
| 	float EsNoMetric;
 | |
| 	float EbNo, EsNo, Es, A;
 | |
| 	int channel_type, code_type;
 | |
| 	int nt=0;				// transmitted codewords
 | |
| 	int nerrs  = 0;			// total number of errors 
 | |
| 	int nerrsu = 0;			// number of undetected errors
 | |
| 	int rc;
 | |
| 
 | |
| 
 | |
| 	// inizialize pointer to required buffers
 | |
| 	int *x=pdata->x;			// message buffer
 | |
| 	int *y=pdata->y, *ydec=pdata->ydec;	// encoded/decoded codeword buffers
 | |
| 	float *qra_v2cmsg=pdata->qra_v2cmsg; // table of the v->c messages
 | |
| 	float *qra_c2vmsg=pdata->qra_c2vmsg; // table of the c->v messages
 | |
| 	float *rp=pdata->rp;		// received samples (real component)
 | |
| 	float *rq=pdata->rq;		// received samples (imag component)
 | |
| 	float *chp=pdata->chp;		// channel gains (real component)
 | |
| 	float *chq=pdata->chq;		// channel gains (imag component)
 | |
| 	float *r=pdata->r;			// received samples amplitudes
 | |
| 	float *ix=pdata->ix;		// intrinsic information to the MP algorithm
 | |
| 	float *ex=pdata->ex;		// extrinsic information from the MP algorithm
 | |
| 
 | |
| 	channel_type = pdata->channel_type;
 | |
| 	code_type    = pcode->type;
 | |
| 
 | |
| 	// define the (true) code rate accordingly to the code type
 | |
| 	switch(code_type) {
 | |
| 		case QRATYPE_CRC:
 | |
| 			R = 1.0f*(qra_K-1)/qra_N;	
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			R = 1.0f*(qra_K-1)/(qra_N-1);	
 | |
| 			break;
 | |
| 		case QRATYPE_NORMAL:
 | |
| 		default:
 | |
| 			R = 1.0f*(qra_K)/(qra_N);	
 | |
| 		}
 | |
| 
 | |
| 	EsNoMetric   = 1.0f*qra_m*R*EbNoMetric;
 | |
| 
 | |
| 	EbNo = (float)pow(10,pdata->EbNodB/10);
 | |
| 	EsNo = 1.0f*qra_m*R*EbNo;
 | |
| 	Es = EsNo*No;
 | |
| 	A = (float)sqrt(Es);
 | |
| 
 | |
| 
 | |
| 	// encode the input
 | |
| 	if (code_type==QRATYPE_CRC || code_type==QRATYPE_CRCPUNCTURED) {
 | |
| 		// compute the information message symbol check as the (negated) xor of all the 
 | |
| 		// information message symbols 
 | |
| 		for (k=0;k<(qra_K-1);k++) 
 | |
| 			x[k]=k%qra_M;
 | |
| 		x[k]=calc_crc6(x,qra_K-1);
 | |
| 		}
 | |
| 	else 
 | |
| 		for (k=0;k<qra_K;k++)
 | |
| 			x[k]=k%qra_M;
 | |
| 
 | |
| 	qra_encode(pcode,y,x);
 | |
| 
 | |
| 	while (pdata->stop==0) {
 | |
| 
 | |
| 		// simulate the channel
 | |
| 		// NOTE: in the case that the code is punctured, for simplicity
 | |
| 		// we compute the channel outputs and the metric also for the crc symbol
 | |
| 		// then we ignore its observation.
 | |
| 		normrnd_s(rp,NSAMPLES,0,sigma);
 | |
| 		normrnd_s(rq,NSAMPLES,0,sigma);
 | |
| 
 | |
| 		if (channel_type == CHANNEL_AWGN) {
 | |
| 			for (k=0;k<qra_N;k++) 
 | |
| 				rp[k*qra_M+y[k]]+=A;
 | |
| 			}
 | |
| 		else if (channel_type == CHANNEL_RAYLEIGH) {
 | |
| 			normrnd_s(chp,qra_N,0,sigmach);
 | |
| 			normrnd_s(chq,qra_N,0,sigmach);
 | |
| 			for (k=0;k<qra_N;k++) {
 | |
| 				rp[k*qra_M+y[k]]+=A*chp[k];
 | |
| 				rq[k*qra_M+y[k]]+=A*chq[k];
 | |
| 				}
 | |
| 			}
 | |
| 		else {
 | |
| 			pdata->done = 1;
 | |
| 			return;	// unknown channel type
 | |
| 			}
 | |
| 
 | |
| 		// compute the squares of the amplitudes of the received samples
 | |
| 		for (k=0;k<NSAMPLES;k++) 
 | |
| 			r[k] = rp[k]*rp[k] + rq[k]*rq[k];
 | |
| 
 | |
| 		// compute the intrinsic symbols probabilities 
 | |
| 		qra_mfskbesselmetric(ix,r,pcode->m,pcode->N,EsNoMetric);
 | |
| 
 | |
| 		if (code_type==QRATYPE_CRCPUNCTURED) {
 | |
| 			// ignore observations of the CRC symbol as it is not actually sent
 | |
| 			// over the channel
 | |
| 			pd_init(PD_ROWADDR(ix,qra_M,qra_K),pd_uniform(qra_m),qra_M);
 | |
| 			}
 | |
| 
 | |
| 
 | |
| 		if (pdata->ap_index!=0)
 | |
| 			// mask channel observations with a priori knowledge
 | |
| 			ix_mask(pcode,ix,ap_masks_jt65[pdata->ap_index],x);
 | |
| 
 | |
| 
 | |
| 		// compute the extrinsic symbols probabilities with the message-passing algorithm
 | |
| 		// stop if extrinsic information does not converges to 1 within the given number of iterations
 | |
| 		rc = qra_extrinsic(pcode,ex,ix,100,qra_v2cmsg,qra_c2vmsg);
 | |
| 
 | |
| 		if (rc>=0) { // the MP algorithm converged to Iex~1 in rc iterations
 | |
| 
 | |
| 			// decode the codeword
 | |
| 			qra_mapdecode(pcode,ydec,ex,ix);
 | |
| 
 | |
| 			// look for undetected errors
 | |
| 			if (code_type==QRATYPE_CRC || code_type==QRATYPE_CRCPUNCTURED) {
 | |
| 
 | |
| 				j = 0; diff = 0;
 | |
| 				for (k=0;k<(qra_K-1);k++) 
 | |
| 					diff |= (ydec[k]!=x[k]);
 | |
| 				t = calc_crc6(ydec,qra_K-1);
 | |
| 				if (t!=ydec[k]) // error detected - crc doesn't matches
 | |
| 					nerrs  += 1;
 | |
| 				else
 | |
| 					if (diff) {	// decoded message is not equal to the transmitted one but 
 | |
| 						        // the crc test passed
 | |
| 						// add as undetected error
 | |
| 						nerrsu += 1;
 | |
| 						nerrs  += 1;
 | |
| 						// uncomment to see what the undetected error pattern looks like
 | |
| 						//printword("U", ydec);
 | |
| 						}
 | |
| 				}
 | |
| 			else 			
 | |
| 				for (k=0;k<qra_K;k++) 
 | |
| 					if (ydec[k]!=x[k]) {	// decoded msg differs from the transmitted one
 | |
| 						nerrsu += 1;		// it's a false decode
 | |
| 						nerrs  += 1;
 | |
| 						// uncomment to see what the undetected error pattern looks like
 | |
| 						// printword("U", ydec);
 | |
| 						break;
 | |
| 						}
 | |
| 
 | |
| 			}	
 | |
| 		else // failed to converge to a solution within the given number of iterations
 | |
| 			nerrs++;
 | |
| 
 | |
| 		nt = nt+1;
 | |
| 
 | |
| 		pdata->nt=nt;
 | |
| 		pdata->nerrs=nerrs;
 | |
| 		pdata->nerrsu=nerrsu;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	pdata->done=1;
 | |
| 
 | |
| 	#if _WIN32
 | |
| 	_endthread();
 | |
| 	#endif
 | |
| }
 | |
| 
 | |
| #if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
 | |
| 
 | |
| void *wer_test_pthread(void *p)
 | |
| {
 | |
| 	wer_test_thread ((wer_test_ds *)p);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void ix_mask(const qracode *pcode, float *r, const int *mask, const int *x)
 | |
| {
 | |
| 	// mask intrinsic information (channel observations) with a priori knowledge
 | |
| 	
 | |
| 	int k,kk, smask;
 | |
| 	const int qra_K=pcode->K;
 | |
| 	const int qra_M=pcode->M;
 | |
| 	const int qra_m=pcode->m;
 | |
| 
 | |
| 	for (k=0;k<qra_K;k++) {
 | |
| 		smask = mask[k];
 | |
| 		if (smask) {
 | |
| 			for (kk=0;kk<qra_M;kk++) 
 | |
| 				if (((kk^x[k])&smask)!=0)
 | |
| 					*(PD_ROWADDR(r,qra_M,k)+kk) = 0.f;
 | |
| 
 | |
| 			pd_norm(PD_ROWADDR(r,qra_M,k),qra_m);
 | |
| 			}
 | |
| 		}
 | |
| }
 | |
| 
 | |
| 
 | |
| int wer_test_proc(const qracode *pcode, int nthreads, int chtype, int ap_index, float *EbNodB, int *nerrstgt, int nitems)
 | |
| {
 | |
| 	int k,nn,j,nt,nerrs,nerrsu,nd;
 | |
| 	int cini,cend; 
 | |
| 	char fnameout[128];
 | |
| 	FILE *fout;
 | |
| 	wer_test_ds wt[NTHREADS_MAX];
 | |
| 	float pe,avgt;
 | |
| 
 | |
| 	nn = sizeof(EbNodB)/sizeof(float);	// size of the EbNo array to test
 | |
| 
 | |
| 	if (nthreads>NTHREADS_MAX) {
 | |
| 		printf("Error: nthreads should be <=%d\n",NTHREADS_MAX);
 | |
| 		return -1;
 | |
| 		}
 | |
| 
 | |
| 	sprintf(fnameout,"%s%s%s",
 | |
| 				fnameout_pfx[chtype],
 | |
| 				pcode->name, 
 | |
| 				fnameout_sfx[ap_index]);
 | |
| 
 | |
| 	fout = fopen(fnameout,"w");
 | |
| 	fprintf(fout,"# Channel (0=AWGN,1=Rayleigh), Eb/No (dB), Transmitted codewords, Errors, Undetected Errors, Avg dec. time (ms), WER\n");
 | |
| 
 | |
| 	printf("\nTesting the code %s over the %s channel\nSimulation data will be saved to %s\n",
 | |
| 			pcode->name, 
 | |
| 			chtype==CHANNEL_AWGN?"AWGN":"Rayleigh",
 | |
| 			fnameout);
 | |
| 	fflush (stdout);
 | |
| 
 | |
| 	// init fixed thread parameters and preallocate buffers
 | |
| 	for (j=0;j<nthreads;j++)  {
 | |
| 			wt[j].channel_type=chtype;
 | |
| 			wt[j].ap_index = ap_index;
 | |
| 			wt[j].pcode    = pcode;
 | |
| 			wt[j].x        = (int*)malloc(pcode->K*sizeof(int));
 | |
| 			wt[j].y        = (int*)malloc(pcode->N*sizeof(int));
 | |
| 			wt[j].ydec     = (int*)malloc(pcode->N*sizeof(int));
 | |
| 			wt[j].qra_v2cmsg = (float*)malloc(pcode->NMSG*pcode->M*sizeof(float));
 | |
| 			wt[j].qra_c2vmsg = (float*)malloc(pcode->NMSG*pcode->M*sizeof(float));
 | |
| 			wt[j].rp       = (float*)malloc(pcode->N*pcode->M*sizeof(float));
 | |
| 			wt[j].rq       = (float*)malloc(pcode->N*pcode->M*sizeof(float));
 | |
| 			wt[j].chp      = (float*)malloc(pcode->N*sizeof(float));
 | |
| 			wt[j].chq      = (float*)malloc(pcode->N*sizeof(float));
 | |
| 			wt[j].r        = (float*)malloc(pcode->N*pcode->M*sizeof(float));
 | |
| 			wt[j].ix       = (float*)malloc(pcode->N*pcode->M*sizeof(float));
 | |
| 			wt[j].ex       = (float*)malloc(pcode->N*pcode->M*sizeof(float));
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 	for (k=0;k<nitems;k++) {
 | |
| 
 | |
| 		printf("\nTesting at Eb/No=%4.1f dB...",EbNodB[k]);
 | |
| 		fflush (stdout);
 | |
| 
 | |
| 		for (j=0;j<nthreads;j++)  {
 | |
| 			wt[j].EbNodB=EbNodB[k];
 | |
| 			wt[j].nt=0;
 | |
| 			wt[j].nerrs=0;
 | |
| 			wt[j].nerrsu=0;
 | |
| 			wt[j].done = 0;
 | |
| 			wt[j].stop = 0;
 | |
| 			#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
 | |
| 			if (pthread_create (&wt[j].thread, 0, wer_test_pthread, &wt[j])) {
 | |
| 				perror ("Creating thread: ");
 | |
| 				exit (255);
 | |
| 			}
 | |
| 			#else
 | |
| 			_beginthread((void*)(void*)wer_test_thread,0,&wt[j]);
 | |
| 			#endif
 | |
| 			}
 | |
| 
 | |
| 		nd = 0;
 | |
| 		cini = GetTickCount();
 | |
| 
 | |
| 		while (1) {
 | |
| 			// count errors
 | |
| 			nerrs = 0;
 | |
| 			for (j=0;j<nthreads;j++) 
 | |
| 				nerrs += wt[j].nerrs;
 | |
| 			// stop the working threads
 | |
| 			// if number of errors reached at this Eb/No value
 | |
| 			if (nerrs>=nerrstgt[k]) {
 | |
| 				for (j=0;j<nthreads;j++) 
 | |
| 					wt[j].stop = 1;
 | |
| 				break;
 | |
| 				}
 | |
| 			else { // continue with the simulation
 | |
| 				Sleep(2);
 | |
| 				nd = (nd+1)%100;
 | |
| 				if (nd==0) {
 | |
| 					printf(".");
 | |
| 					fflush (stdout);
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 			}
 | |
| 
 | |
| 		cend = GetTickCount();
 | |
| 
 | |
| 		// wait for the working threads to exit
 | |
| 		for (j=0;j<nthreads;j++) 
 | |
| 		#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
 | |
| 		{
 | |
| 			void *rc;
 | |
| 			if (pthread_join (wt[j].thread, &rc)) {
 | |
| 				perror ("Waiting working threads to exit");
 | |
| 				exit (255);
 | |
| 			}
 | |
| 		}
 | |
| 		#else
 | |
| 			while(wt[j].done==0)
 | |
| 				Sleep(1);
 | |
| 
 | |
| 		#endif
 | |
| 		printf("\n");
 | |
| 		fflush (stdout);
 | |
| 
 | |
| 		// compute the total number of transmitted codewords
 | |
| 		// the total number of errors and the total number of undetected errors
 | |
| 		nt = 0;
 | |
| 		nerrs =0;
 | |
| 		nerrsu = 0;
 | |
| 		for (j=0;j<nthreads;j++) {
 | |
| 			nt += wt[j].nt;
 | |
| 			nerrs += wt[j].nerrs;
 | |
| 			nerrsu += wt[j].nerrsu;
 | |
| 			}
 | |
| 
 | |
| 		pe = 1.0f*nerrs/nt;			// word error rate 
 | |
| 		avgt = 1.0f*(cend-cini)/nt; // average time per decode (ms)
 | |
| 
 | |
| 		printf("Elapsed Time=%6.1fs (%5.2fms/word)\nTransmitted=%8d - Errors=%6d - Undetected=%3d - WER=%.2e\n",
 | |
| 				0.001f*(cend-cini),
 | |
| 				avgt, nt, nerrs, nerrsu, pe);
 | |
| 		fflush (stdout);
 | |
| 
 | |
| 		// save simulation data to output file
 | |
| 		fprintf(fout,"%01d %.2f %d %d %d %.2f %.2e\n",
 | |
| 					chtype, 
 | |
| 					EbNodB[k],
 | |
| 					nt,
 | |
| 					nerrs,
 | |
| 					nerrsu, 
 | |
| 					avgt, 
 | |
| 					pe);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	fclose(fout);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| const qracode *codetotest[] = {
 | |
| 	&qra_12_63_64_irr_b,
 | |
| 	&qra_13_64_64_irr_e
 | |
| };
 | |
| 
 | |
| void syntax(void)
 | |
| {
 | |
| 	printf("\nQ-ary Repeat-Accumulate Code Word Error Rate Simulator\n");
 | |
| 	printf("2016, Nico Palermo - IV3NWV\n\n");
 | |
| 	printf("Syntax: qracodes [-q<code_index>] [-t<threads>] [-c<ch_type>] [-a<ap_index>] [-f<fnamein>[-h]\n");
 | |
| 	printf("Options: \n");
 | |
| 	printf("       -q<code_index>: code to simulate. 0=qra_12_63_64_irr_b\n");
 | |
| 	printf("                                         1=qra_13_64_64_irr_e (default)\n");
 | |
| 	printf("       -t<threads>   : number of threads to be used for the simulation [1..24]\n");
 | |
| 	printf("                       (default=8)\n");
 | |
| 	printf("       -c<ch_type>   : channel_type. 0=AWGN 1=Rayleigh \n");
 | |
| 	printf("                       (default=AWGN)\n");
 | |
| 	printf("       -a<ap_index>  : amount of a-priori information provided to decoder. \n");
 | |
| 	printf("                       0= No a-priori (default)\n");
 | |
| 	printf("                       1= 28 bit \n");
 | |
| 	printf("                       2= 44 bit \n");
 | |
| 	printf("                       3= 56 bit \n");
 | |
| 	printf("       -f<fnamein>   : name of the file containing the Eb/No values to be simulated\n");
 | |
| 	printf("                       (default=ebnovalues.txt)\n");
 | |
| 	printf("                       This file should contain lines in this format:\n");
 | |
| 	printf("                       # Eb/No(dB) Target Errors\n");
 | |
| 	printf("                       0.1 5000\n");
 | |
| 	printf("                       0.6 5000\n");
 | |
| 	printf("                       1.1 1000\n");
 | |
| 	printf("                       1.6 1000\n");
 | |
| 	printf("                       ...\n");
 | |
| 	printf("                       (lines beginning with a # are treated as comments\n\n");
 | |
| }
 | |
| 
 | |
| #define SIM_POINTS_MAX 20
 | |
| 
 | |
| int main(int argc, char* argv[])
 | |
| {
 | |
| 
 | |
| 	float EbNodB[SIM_POINTS_MAX];
 | |
| 	int  nerrstgt[SIM_POINTS_MAX];
 | |
| 	FILE *fin;
 | |
| 
 | |
| 	char fnamein[128]= "ebnovalues.txt";
 | |
| 	char buf[128];
 | |
| 
 | |
| 	int nitems   = 0;
 | |
| 	int code_idx = 1;
 | |
| 	int nthreads = 8;
 | |
| 	int ch_type  = CHANNEL_AWGN;
 | |
| 	int ap_index = AP_NONE;
 | |
| 
 | |
| 	// parse command line
 | |
| 	while(--argc) {
 | |
| 		argv++;
 | |
| 		if (strncmp(*argv,"-h",2)==0) {
 | |
| 			syntax();
 | |
| 			return 0;
 | |
| 			}
 | |
| 		else
 | |
| 		if (strncmp(*argv,"-q",2)==0) {
 | |
| 			code_idx = (int)atoi((*argv)+2);
 | |
| 			if (code_idx>1) {
 | |
| 				printf("Invalid code index\n");
 | |
| 				syntax();
 | |
| 				return -1;
 | |
| 				}
 | |
| 			}
 | |
| 		else
 | |
| 		if (strncmp(*argv,"-t",2)==0) {
 | |
| 			nthreads = (int)atoi((*argv)+2);
 | |
| 			printf("nthreads = %d\n",nthreads);
 | |
| 			if (nthreads>NTHREADS_MAX) {
 | |
| 				printf("Invalid number of threads\n");
 | |
| 				syntax();
 | |
| 				return -1;
 | |
| 				}
 | |
| 			}
 | |
| 		else
 | |
| 		if (strncmp(*argv,"-c",2)==0) {
 | |
| 			ch_type = (int)atoi((*argv)+2);
 | |
| 			if (ch_type>CHANNEL_RAYLEIGH) {
 | |
| 				printf("Invalid channel type\n");
 | |
| 				syntax();
 | |
| 				return -1;
 | |
| 				}
 | |
| 			}
 | |
| 		else
 | |
| 		if (strncmp(*argv,"-a",2)==0) {
 | |
| 			ap_index = (int)atoi((*argv)+2);
 | |
| 			if (ap_index>AP_56) {
 | |
| 				printf("Invalid a-priori information index\n");
 | |
| 				syntax();
 | |
| 				return -1;
 | |
| 				}
 | |
| 			}
 | |
| 		else
 | |
| 		if (strncmp(*argv,"-f",2)==0) {
 | |
| 			strncpy(fnamein,(*argv)+2,127);
 | |
| 			}
 | |
| 		else
 | |
| 		if (strncmp(*argv,"-h",2)==0) {
 | |
| 			syntax();
 | |
| 			return -1;
 | |
| 			}
 | |
| 		else {
 | |
| 			printf("Invalid option\n");
 | |
| 			syntax();
 | |
| 			return -1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	// parse points to be simulated from the input file
 | |
| 	fin = fopen(fnamein,"r");
 | |
| 	if (!fin) {
 | |
| 		printf("Can't open file: %s\n",fnamein);
 | |
| 		syntax();
 | |
| 		}
 | |
| 
 | |
| 	while (fgets(buf,128,fin)!=0) 
 | |
| 		if (*buf=='#' || *buf=='\n' )
 | |
| 			continue;
 | |
| 		else
 | |
| 			if (nitems==SIM_POINTS_MAX)
 | |
| 				break;
 | |
| 			else
 | |
| 				if (sscanf(buf,"%f %u",&EbNodB[nitems],&nerrstgt[nitems])!=2) {
 | |
| 					printf("Invalid input file format\n");
 | |
| 					syntax();
 | |
| 					return -1;
 | |
| 					}
 | |
| 				else
 | |
| 					nitems++;
 | |
| 
 | |
| 	fclose(fin);
 | |
| 
 | |
| 	if (nitems==0) {
 | |
| 		printf("No Eb/No point specified in file %s\n",fnamein);
 | |
| 		syntax();
 | |
| 		return -1;
 | |
| 		}
 | |
| 
 | |
| 	printf("\nQ-ary Repeat-Accumulate Code Word Error Rate Simulator\n");
 | |
| 	printf("2016, Nico Palermo - IV3NWV\n\n");
 | |
| 
 | |
| 	printf("Nthreads   = %d\n",nthreads);
 | |
| 	printf("Channel    = %s\n",ch_type==CHANNEL_AWGN?"AWGN":"Rayleigh");
 | |
| 	printf("Codename   = %s\n",codetotest[code_idx]->name);
 | |
| 	printf("A-priori   = %s\n",ap_str[ap_index]);
 | |
| 	printf("Eb/No input file = %s\n\n",fnamein);
 | |
| 
 | |
| 	wer_test_proc(codetotest[code_idx], nthreads, ch_type, ap_index, EbNodB, nerrstgt, nitems);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 |