mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-08 01:56:10 -05:00
8d353a5b3b
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/trunk@189 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
3591 lines
128 KiB
C
3591 lines
128 KiB
C
/*
|
|
* $Id$
|
|
* PortAudio Portable Real-Time Audio Library
|
|
* Latest Version at: http://www.portaudio.com
|
|
* ALSA implementation by Joshua Haberman and Arve Knudsen
|
|
*
|
|
* Copyright (c) 2002 Joshua Haberman <joshua@haberman.com>
|
|
* Copyright (c) 2005 Arve Knudsen <aknuds-1@broadpark.no>
|
|
*
|
|
* Based on the Open Source API proposed by Ross Bencina
|
|
* Copyright (c) 1999-2002 Ross Bencina, Phil Burk
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files
|
|
* (the "Software"), to deal in the Software without restriction,
|
|
* including without limitation the rights to use, copy, modify, merge,
|
|
* publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* Any person wishing to distribute modifications to the Software is
|
|
* requested to send the modifications to the original developer so that
|
|
* they can be incorporated into the canonical version.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
|
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#define ALSA_PCM_NEW_HW_PARAMS_API
|
|
#define ALSA_PCM_NEW_SW_PARAMS_API
|
|
#include <alsa/asoundlib.h>
|
|
#undef ALSA_PCM_NEW_HW_PARAMS_API
|
|
#undef ALSA_PCM_NEW_SW_PARAMS_API
|
|
|
|
#include <sys/poll.h>
|
|
#include <string.h> /* strlen() */
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <time.h>
|
|
#include <sys/mman.h>
|
|
#include <signal.h> /* For sig_atomic_t */
|
|
|
|
#include "portaudio.h"
|
|
#include "pa_util.h"
|
|
#include "../pa_unix/pa_unix_util.h"
|
|
#include "pa_allocation.h"
|
|
#include "pa_hostapi.h"
|
|
#include "pa_stream.h"
|
|
#include "pa_cpuload.h"
|
|
#include "pa_process.h"
|
|
|
|
#include "pa_linux_alsa.h"
|
|
|
|
/* Check return value of ALSA function, and map it to PaError */
|
|
#define ENSURE_(expr, code) \
|
|
do { \
|
|
if( UNLIKELY( (aErr_ = (expr)) < 0 ) ) \
|
|
{ \
|
|
/* PaUtil_SetLastHostErrorInfo should only be used in the main thread */ \
|
|
if( (code) == paUnanticipatedHostError && pthread_self() != callbackThread_ ) \
|
|
{ \
|
|
PaUtil_SetLastHostErrorInfo( paALSA, aErr_, snd_strerror( aErr_ ) ); \
|
|
} \
|
|
PaUtil_DebugPrint( "Expression '" #expr "' failed in '" __FILE__ "', line: " STRINGIZE( __LINE__ ) "\n" ); \
|
|
if( (code) == paUnanticipatedHostError ) \
|
|
PA_DEBUG(( "Host error description: %s\n", snd_strerror( aErr_ ) )); \
|
|
result = (code); \
|
|
goto error; \
|
|
} \
|
|
} while( 0 );
|
|
|
|
#define ENSURE_SYSTEM_(expr, success) \
|
|
do { \
|
|
if( UNLIKELY( (aErr_ = (expr)) != success ) ) \
|
|
{ \
|
|
/* PaUtil_SetLastHostErrorInfo should only be used in the main thread */ \
|
|
if( pthread_self() != callbackThread_ ) \
|
|
{ \
|
|
PaUtil_SetLastHostErrorInfo( paALSA, aErr_, strerror( aErr_ ) ); \
|
|
} \
|
|
PaUtil_DebugPrint( "Expression '" #expr "' failed in '" __FILE__ "', line: " STRINGIZE( __LINE__ ) "\n" ); \
|
|
result = paUnanticipatedHostError; \
|
|
goto error; \
|
|
} \
|
|
} while( 0 );
|
|
|
|
#define ASSERT_CALL_(expr, success) \
|
|
aErr_ = (expr); \
|
|
assert( success == aErr_ );
|
|
|
|
static int aErr_; /* Used with ENSURE_ */
|
|
static pthread_t callbackThread_;
|
|
|
|
typedef enum
|
|
{
|
|
StreamDirection_In,
|
|
StreamDirection_Out
|
|
} StreamDirection;
|
|
|
|
/* Threading utility struct */
|
|
typedef struct PaAlsaThreading
|
|
{
|
|
pthread_t watchdogThread;
|
|
pthread_t callbackThread;
|
|
int watchdogRunning;
|
|
int rtSched;
|
|
int rtPrio;
|
|
int useWatchdog;
|
|
unsigned long throttledSleepTime;
|
|
volatile PaTime callbackTime;
|
|
volatile PaTime callbackCpuTime;
|
|
PaUtilCpuLoadMeasurer *cpuLoadMeasurer;
|
|
} PaAlsaThreading;
|
|
|
|
typedef struct
|
|
{
|
|
PaSampleFormat hostSampleFormat;
|
|
unsigned long framesPerBuffer;
|
|
int numUserChannels, numHostChannels;
|
|
int userInterleaved, hostInterleaved;
|
|
|
|
snd_pcm_t *pcm;
|
|
snd_pcm_uframes_t bufferSize;
|
|
snd_pcm_format_t nativeFormat;
|
|
unsigned int nfds;
|
|
int ready; /* Marked ready from poll */
|
|
void **userBuffers;
|
|
snd_pcm_uframes_t offset;
|
|
StreamDirection streamDir;
|
|
|
|
snd_pcm_channel_area_t *channelAreas; /* Needed for channel adaption */
|
|
} PaAlsaStreamComponent;
|
|
|
|
/* Implementation specific stream structure */
|
|
typedef struct PaAlsaStream
|
|
{
|
|
PaUtilStreamRepresentation streamRepresentation;
|
|
PaUtilCpuLoadMeasurer cpuLoadMeasurer;
|
|
PaUtilBufferProcessor bufferProcessor;
|
|
PaAlsaThreading threading;
|
|
|
|
unsigned long framesPerUserBuffer, maxFramesPerHostBuffer;
|
|
|
|
int primeBuffers;
|
|
int callbackMode; /* bool: are we running in callback mode? */
|
|
int pcmsSynced; /* Have we successfully synced pcms */
|
|
|
|
/* the callback thread uses these to poll the sound device(s), waiting
|
|
* for data to be ready/available */
|
|
struct pollfd* pfds;
|
|
int pollTimeout;
|
|
|
|
/* Used in communication between threads */
|
|
volatile sig_atomic_t callback_finished; /* bool: are we in the "callback finished" state? */
|
|
volatile sig_atomic_t callbackAbort; /* Drop frames? */
|
|
volatile sig_atomic_t callbackStop; /* Signal a stop */
|
|
volatile sig_atomic_t isActive; /* Is stream in active state? (Between StartStream and StopStream || !paContinue) */
|
|
pthread_mutex_t stateMtx; /* Used to synchronize access to stream state */
|
|
pthread_mutex_t startMtx; /* Used to synchronize stream start in callback mode */
|
|
pthread_cond_t startCond; /* Wait untill audio is started in callback thread */
|
|
|
|
int neverDropInput;
|
|
|
|
PaTime underrun;
|
|
PaTime overrun;
|
|
|
|
PaAlsaStreamComponent capture, playback;
|
|
}
|
|
PaAlsaStream;
|
|
|
|
/* PaAlsaHostApiRepresentation - host api datastructure specific to this implementation */
|
|
|
|
typedef struct PaAlsaHostApiRepresentation
|
|
{
|
|
PaUtilHostApiRepresentation commonHostApiRep;
|
|
PaUtilStreamInterface callbackStreamInterface;
|
|
PaUtilStreamInterface blockingStreamInterface;
|
|
|
|
PaUtilAllocationGroup *allocations;
|
|
|
|
PaHostApiIndex hostApiIndex;
|
|
}
|
|
PaAlsaHostApiRepresentation;
|
|
|
|
typedef struct PaAlsaDeviceInfo
|
|
{
|
|
PaDeviceInfo commonDeviceInfo;
|
|
char *alsaName;
|
|
int isPlug;
|
|
int minInputChannels;
|
|
int minOutputChannels;
|
|
}
|
|
PaAlsaDeviceInfo;
|
|
|
|
/* Threading utilities */
|
|
|
|
static void InitializeThreading( PaAlsaThreading *th, PaUtilCpuLoadMeasurer *clm )
|
|
{
|
|
th->watchdogRunning = 0;
|
|
th->rtSched = 0;
|
|
th->callbackTime = 0;
|
|
th->callbackCpuTime = 0;
|
|
th->useWatchdog = 1;
|
|
th->throttledSleepTime = 0;
|
|
th->cpuLoadMeasurer = clm;
|
|
|
|
th->rtPrio = (sched_get_priority_max( SCHED_FIFO ) - sched_get_priority_min( SCHED_FIFO )) / 2
|
|
+ sched_get_priority_min( SCHED_FIFO );
|
|
}
|
|
|
|
static PaError KillCallbackThread( PaAlsaThreading *th, int wait, PaError *exitResult, PaError *watchdogExitResult )
|
|
{
|
|
PaError result = paNoError;
|
|
void *pret;
|
|
|
|
if( exitResult )
|
|
*exitResult = paNoError;
|
|
if( watchdogExitResult )
|
|
*watchdogExitResult = paNoError;
|
|
|
|
if( th->watchdogRunning )
|
|
{
|
|
pthread_cancel( th->watchdogThread );
|
|
ENSURE_SYSTEM_( pthread_join( th->watchdogThread, &pret ), 0 );
|
|
|
|
if( pret && pret != PTHREAD_CANCELED )
|
|
{
|
|
if( watchdogExitResult )
|
|
*watchdogExitResult = *(PaError *) pret;
|
|
free( pret );
|
|
}
|
|
}
|
|
|
|
/* Only kill the thread if it isn't in the process of stopping (flushing adaptation buffers) */
|
|
/* TODO: Make join time out */
|
|
if( !wait )
|
|
{
|
|
PA_DEBUG(( "%s: Canceling thread %d\n", __FUNCTION__, th->callbackThread ));
|
|
pthread_cancel( th->callbackThread ); /* XXX: Safe to call this if the thread has exited on its own? */
|
|
}
|
|
PA_DEBUG(( "%s: Joining thread %d\n", __FUNCTION__, th->callbackThread ));
|
|
ENSURE_SYSTEM_( pthread_join( th->callbackThread, &pret ), 0 );
|
|
|
|
if( pret && pret != PTHREAD_CANCELED )
|
|
{
|
|
if( exitResult )
|
|
*exitResult = *(PaError *) pret;
|
|
free( pret );
|
|
}
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Lock a pthread_mutex_t.
|
|
*
|
|
* @concern ThreadCancellation We're disabling thread cancellation while the thread is holding a lock, so mutexes are
|
|
* properly unlocked at termination time.
|
|
*/
|
|
static PaError LockMutex( pthread_mutex_t *mtx )
|
|
{
|
|
PaError result = paNoError;
|
|
int oldState;
|
|
|
|
ENSURE_SYSTEM_( pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, &oldState ), 0 );
|
|
ENSURE_SYSTEM_( pthread_mutex_lock( mtx ), 0 );
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Unlock a pthread_mutex_t.
|
|
*
|
|
* @concern ThreadCancellation Thread cancellation is enabled again after the mutex is properly unlocked.
|
|
*/
|
|
static PaError UnlockMutex( pthread_mutex_t *mtx )
|
|
{
|
|
PaError result = paNoError;
|
|
int oldState;
|
|
|
|
ENSURE_SYSTEM_( pthread_mutex_unlock( mtx ), 0 );
|
|
ENSURE_SYSTEM_( pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, &oldState ), 0 );
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static void OnWatchdogExit( void *userData )
|
|
{
|
|
PaAlsaThreading *th = (PaAlsaThreading *) userData;
|
|
struct sched_param spm = { 0 };
|
|
assert( th );
|
|
|
|
ASSERT_CALL_( pthread_setschedparam( th->callbackThread, SCHED_OTHER, &spm ), 0 ); /* Lower before exiting */
|
|
PA_DEBUG(( "Watchdog exiting\n" ));
|
|
}
|
|
|
|
static PaError BoostPriority( PaAlsaThreading *th )
|
|
{
|
|
PaError result = paNoError;
|
|
struct sched_param spm = { 0 };
|
|
spm.sched_priority = th->rtPrio;
|
|
|
|
assert( th );
|
|
|
|
if( pthread_setschedparam( th->callbackThread, SCHED_FIFO, &spm ) != 0 )
|
|
{
|
|
PA_UNLESS( errno == EPERM, paInternalError ); /* Lack permission to raise priority */
|
|
PA_DEBUG(( "Failed bumping priority\n" ));
|
|
result = 0;
|
|
}
|
|
else
|
|
result = 1; /* Success */
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static void *WatchdogFunc( void *userData )
|
|
{
|
|
PaError result = paNoError, *pres = NULL;
|
|
int err;
|
|
PaAlsaThreading *th = (PaAlsaThreading *) userData;
|
|
unsigned intervalMsec = 500;
|
|
const PaTime maxSeconds = 3.; /* Max seconds between callbacks */
|
|
PaTime timeThen = PaUtil_GetTime(), timeNow, timeElapsed, cpuTimeThen, cpuTimeNow, cpuTimeElapsed;
|
|
double cpuLoad, avgCpuLoad = 0.;
|
|
int throttled = 0;
|
|
|
|
assert( th );
|
|
|
|
/* Execute OnWatchdogExit when exiting */
|
|
pthread_cleanup_push( &OnWatchdogExit, th );
|
|
|
|
/* Boost priority of callback thread */
|
|
PA_ENSURE( result = BoostPriority( th ) );
|
|
if( !result )
|
|
{
|
|
/* Boost failed, might as well exit */
|
|
pthread_exit( NULL );
|
|
}
|
|
|
|
cpuTimeThen = th->callbackCpuTime;
|
|
{
|
|
int policy;
|
|
struct sched_param spm = { 0 };
|
|
pthread_getschedparam( pthread_self(), &policy, &spm );
|
|
PA_DEBUG(( "%s: Watchdog priority is %d\n", __FUNCTION__, spm.sched_priority ));
|
|
}
|
|
|
|
while( 1 )
|
|
{
|
|
double lowpassCoeff = 0.9, lowpassCoeff1 = 0.99999 - lowpassCoeff;
|
|
|
|
/* Test before and after in case whatever underlying sleep call isn't interrupted by pthread_cancel */
|
|
pthread_testcancel();
|
|
Pa_Sleep( intervalMsec );
|
|
pthread_testcancel();
|
|
|
|
if( PaUtil_GetTime() - th->callbackTime > maxSeconds )
|
|
{
|
|
PA_DEBUG(( "Watchdog: Terminating callback thread\n" ));
|
|
/* Tell thread to terminate */
|
|
err = pthread_kill( th->callbackThread, SIGKILL );
|
|
pthread_exit( NULL );
|
|
}
|
|
|
|
PA_DEBUG(( "%s: PortAudio reports CPU load: %g\n", __FUNCTION__, PaUtil_GetCpuLoad( th->cpuLoadMeasurer ) ));
|
|
|
|
/* Check if we should throttle, or unthrottle :P */
|
|
cpuTimeNow = th->callbackCpuTime;
|
|
cpuTimeElapsed = cpuTimeNow - cpuTimeThen;
|
|
cpuTimeThen = cpuTimeNow;
|
|
|
|
timeNow = PaUtil_GetTime();
|
|
timeElapsed = timeNow - timeThen;
|
|
timeThen = timeNow;
|
|
cpuLoad = cpuTimeElapsed / timeElapsed;
|
|
avgCpuLoad = avgCpuLoad * lowpassCoeff + cpuLoad * lowpassCoeff1;
|
|
/*
|
|
if( throttled )
|
|
PA_DEBUG(( "Watchdog: CPU load: %g, %g\n", avgCpuLoad, cpuTimeElapsed ));
|
|
*/
|
|
if( PaUtil_GetCpuLoad( th->cpuLoadMeasurer ) > .925 )
|
|
{
|
|
static int policy;
|
|
static struct sched_param spm = { 0 };
|
|
static const struct sched_param defaultSpm = { 0 };
|
|
PA_DEBUG(( "%s: Throttling audio thread, priority %d\n", __FUNCTION__, spm.sched_priority ));
|
|
|
|
pthread_getschedparam( th->callbackThread, &policy, &spm );
|
|
if( !pthread_setschedparam( th->callbackThread, SCHED_OTHER, &defaultSpm ) )
|
|
{
|
|
throttled = 1;
|
|
}
|
|
else
|
|
PA_DEBUG(( "Watchdog: Couldn't lower priority of audio thread: %s\n", strerror( errno ) ));
|
|
|
|
/* Give other processes a go, before raising priority again */
|
|
PA_DEBUG(( "%s: Watchdog sleeping for %lu msecs before unthrottling\n", __FUNCTION__, th->throttledSleepTime ));
|
|
Pa_Sleep( th->throttledSleepTime );
|
|
|
|
/* Reset callback priority */
|
|
if( pthread_setschedparam( th->callbackThread, SCHED_FIFO, &spm ) != 0 )
|
|
{
|
|
PA_DEBUG(( "%s: Couldn't raise priority of audio thread: %s\n", __FUNCTION__, strerror( errno ) ));
|
|
}
|
|
|
|
if( PaUtil_GetCpuLoad( th->cpuLoadMeasurer ) >= .99 )
|
|
intervalMsec = 50;
|
|
else
|
|
intervalMsec = 100;
|
|
|
|
/*
|
|
lowpassCoeff = .97;
|
|
lowpassCoeff1 = .99999 - lowpassCoeff;
|
|
*/
|
|
}
|
|
else if( throttled && avgCpuLoad < .8 )
|
|
{
|
|
intervalMsec = 500;
|
|
throttled = 0;
|
|
|
|
/*
|
|
lowpassCoeff = .9;
|
|
lowpassCoeff1 = .99999 - lowpassCoeff;
|
|
*/
|
|
}
|
|
}
|
|
|
|
pthread_cleanup_pop( 1 ); /* Execute cleanup on exit */
|
|
|
|
error:
|
|
/* Shouldn't get here in the normal case */
|
|
|
|
/* Pass on error code */
|
|
pres = malloc( sizeof (PaError) );
|
|
*pres = result;
|
|
|
|
pthread_exit( pres );
|
|
}
|
|
|
|
static PaError CreateCallbackThread( PaAlsaThreading *th, void *(*callbackThreadFunc)( void * ), PaStream *s )
|
|
{
|
|
PaError result = paNoError;
|
|
pthread_attr_t attr;
|
|
int started = 0;
|
|
|
|
#if defined _POSIX_MEMLOCK && (_POSIX_MEMLOCK != -1)
|
|
if( th->rtSched )
|
|
{
|
|
if( mlockall( MCL_CURRENT | MCL_FUTURE ) < 0 )
|
|
{
|
|
int savedErrno = errno; /* In case errno gets overwritten */
|
|
assert( savedErrno != EINVAL ); /* Most likely a programmer error */
|
|
PA_UNLESS( (savedErrno == EPERM), paInternalError );
|
|
PA_DEBUG(( "%s: Failed locking memory\n", __FUNCTION__ ));
|
|
}
|
|
else
|
|
PA_DEBUG(( "%s: Successfully locked memory\n", __FUNCTION__ ));
|
|
}
|
|
#endif
|
|
|
|
PA_UNLESS( !pthread_attr_init( &attr ), paInternalError );
|
|
/* Priority relative to other processes */
|
|
PA_UNLESS( !pthread_attr_setscope( &attr, PTHREAD_SCOPE_SYSTEM ), paInternalError );
|
|
|
|
PA_UNLESS( !pthread_create( &th->callbackThread, &attr, callbackThreadFunc, s ), paInternalError );
|
|
started = 1;
|
|
|
|
if( th->rtSched )
|
|
{
|
|
if( th->useWatchdog )
|
|
{
|
|
int err;
|
|
struct sched_param wdSpm = { 0 };
|
|
/* Launch watchdog, watchdog sets callback thread priority */
|
|
int prio = PA_MIN( th->rtPrio + 4, sched_get_priority_max( SCHED_FIFO ) );
|
|
wdSpm.sched_priority = prio;
|
|
|
|
PA_UNLESS( !pthread_attr_init( &attr ), paInternalError );
|
|
PA_UNLESS( !pthread_attr_setinheritsched( &attr, PTHREAD_EXPLICIT_SCHED ), paInternalError );
|
|
PA_UNLESS( !pthread_attr_setscope( &attr, PTHREAD_SCOPE_SYSTEM ), paInternalError );
|
|
PA_UNLESS( !pthread_attr_setschedpolicy( &attr, SCHED_FIFO ), paInternalError );
|
|
PA_UNLESS( !pthread_attr_setschedparam( &attr, &wdSpm ), paInternalError );
|
|
if( (err = pthread_create( &th->watchdogThread, &attr, &WatchdogFunc, th )) )
|
|
{
|
|
PA_UNLESS( err == EPERM, paInternalError );
|
|
/* Permission error, go on without realtime privileges */
|
|
PA_DEBUG(( "Failed bumping priority\n" ));
|
|
}
|
|
else
|
|
{
|
|
int policy;
|
|
th->watchdogRunning = 1;
|
|
ENSURE_SYSTEM_( pthread_getschedparam( th->watchdogThread, &policy, &wdSpm ), 0 );
|
|
/* Check if priority is right, policy could potentially differ from SCHED_FIFO (but that's alright) */
|
|
if( wdSpm.sched_priority != prio )
|
|
{
|
|
PA_DEBUG(( "Watchdog priority not set correctly (%d)\n", wdSpm.sched_priority ));
|
|
PA_ENSURE( paInternalError );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
PA_ENSURE( BoostPriority( th ) );
|
|
}
|
|
|
|
end:
|
|
return result;
|
|
error:
|
|
if( started )
|
|
KillCallbackThread( th, 0, NULL, NULL );
|
|
|
|
goto end;
|
|
}
|
|
|
|
static void CallbackUpdate( PaAlsaThreading *th )
|
|
{
|
|
th->callbackTime = PaUtil_GetTime();
|
|
th->callbackCpuTime = PaUtil_GetCpuLoad( th->cpuLoadMeasurer );
|
|
}
|
|
|
|
/* prototypes for functions declared in this file */
|
|
|
|
static void Terminate( struct PaUtilHostApiRepresentation *hostApi );
|
|
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
|
|
const PaStreamParameters *inputParameters,
|
|
const PaStreamParameters *outputParameters,
|
|
double sampleRate );
|
|
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
|
|
PaStream** s,
|
|
const PaStreamParameters *inputParameters,
|
|
const PaStreamParameters *outputParameters,
|
|
double sampleRate,
|
|
unsigned long framesPerBuffer,
|
|
PaStreamFlags streamFlags,
|
|
PaStreamCallback *callback,
|
|
void *userData );
|
|
static PaError CloseStream( PaStream* stream );
|
|
static PaError StartStream( PaStream *stream );
|
|
static PaError StopStream( PaStream *stream );
|
|
static PaError AbortStream( PaStream *stream );
|
|
static PaError IsStreamStopped( PaStream *s );
|
|
static PaError IsStreamActive( PaStream *stream );
|
|
static PaTime GetStreamTime( PaStream *stream );
|
|
static double GetStreamCpuLoad( PaStream* stream );
|
|
static PaError BuildDeviceList( PaAlsaHostApiRepresentation *hostApi );
|
|
static int SetApproximateSampleRate( snd_pcm_t *pcm, snd_pcm_hw_params_t *hwParams, double sampleRate );
|
|
static int GetExactSampleRate( snd_pcm_hw_params_t *hwParams, double *sampleRate );
|
|
|
|
/* Callback prototypes */
|
|
static void *CallbackThreadFunc( void *userData );
|
|
|
|
/* Blocking prototypes */
|
|
static signed long GetStreamReadAvailable( PaStream* s );
|
|
static signed long GetStreamWriteAvailable( PaStream* s );
|
|
static PaError ReadStream( PaStream* stream, void *buffer, unsigned long frames );
|
|
static PaError WriteStream( PaStream* stream, const void *buffer, unsigned long frames );
|
|
|
|
|
|
static const PaAlsaDeviceInfo *GetDeviceInfo( const PaUtilHostApiRepresentation *hostApi, int device )
|
|
{
|
|
return (const PaAlsaDeviceInfo *)hostApi->deviceInfos[device];
|
|
}
|
|
|
|
PaError PaAlsa_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex hostApiIndex )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaHostApiRepresentation *alsaHostApi = NULL;
|
|
|
|
PA_UNLESS( alsaHostApi = (PaAlsaHostApiRepresentation*) PaUtil_AllocateMemory(
|
|
sizeof(PaAlsaHostApiRepresentation) ), paInsufficientMemory );
|
|
PA_UNLESS( alsaHostApi->allocations = PaUtil_CreateAllocationGroup(), paInsufficientMemory );
|
|
alsaHostApi->hostApiIndex = hostApiIndex;
|
|
|
|
*hostApi = (PaUtilHostApiRepresentation*)alsaHostApi;
|
|
(*hostApi)->info.structVersion = 1;
|
|
(*hostApi)->info.type = paALSA;
|
|
(*hostApi)->info.name = "ALSA";
|
|
|
|
(*hostApi)->Terminate = Terminate;
|
|
(*hostApi)->OpenStream = OpenStream;
|
|
(*hostApi)->IsFormatSupported = IsFormatSupported;
|
|
|
|
PA_ENSURE( BuildDeviceList( alsaHostApi ) );
|
|
|
|
PaUtil_InitializeStreamInterface( &alsaHostApi->callbackStreamInterface,
|
|
CloseStream, StartStream,
|
|
StopStream, AbortStream,
|
|
IsStreamStopped, IsStreamActive,
|
|
GetStreamTime, GetStreamCpuLoad,
|
|
PaUtil_DummyRead, PaUtil_DummyWrite,
|
|
PaUtil_DummyGetReadAvailable,
|
|
PaUtil_DummyGetWriteAvailable );
|
|
|
|
PaUtil_InitializeStreamInterface( &alsaHostApi->blockingStreamInterface,
|
|
CloseStream, StartStream,
|
|
StopStream, AbortStream,
|
|
IsStreamStopped, IsStreamActive,
|
|
GetStreamTime, PaUtil_DummyGetCpuLoad,
|
|
ReadStream, WriteStream,
|
|
GetStreamReadAvailable,
|
|
GetStreamWriteAvailable );
|
|
|
|
return result;
|
|
|
|
error:
|
|
if( alsaHostApi )
|
|
{
|
|
if( alsaHostApi->allocations )
|
|
{
|
|
PaUtil_FreeAllAllocations( alsaHostApi->allocations );
|
|
PaUtil_DestroyAllocationGroup( alsaHostApi->allocations );
|
|
}
|
|
|
|
PaUtil_FreeMemory( alsaHostApi );
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void Terminate( struct PaUtilHostApiRepresentation *hostApi )
|
|
{
|
|
PaAlsaHostApiRepresentation *alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
|
|
|
|
assert( hostApi );
|
|
|
|
if( alsaHostApi->allocations )
|
|
{
|
|
PaUtil_FreeAllAllocations( alsaHostApi->allocations );
|
|
PaUtil_DestroyAllocationGroup( alsaHostApi->allocations );
|
|
}
|
|
|
|
PaUtil_FreeMemory( alsaHostApi );
|
|
snd_config_update_free_global();
|
|
}
|
|
|
|
/*! Determine max channels and default latencies.
|
|
*
|
|
* This function provides functionality to grope an opened (might be opened for capture or playback) pcm device for
|
|
* traits like max channels, suitable default latencies and default sample rate. Upon error, max channels is set to zero,
|
|
* and a suitable result returned. The device is closed before returning.
|
|
*/
|
|
static PaError GropeDevice( snd_pcm_t *pcm, int *minChannels, int *maxChannels, double *defaultLowLatency,
|
|
double *defaultHighLatency, double *defaultSampleRate, int isPlug )
|
|
{
|
|
PaError result = paNoError;
|
|
snd_pcm_hw_params_t *hwParams;
|
|
snd_pcm_uframes_t lowLatency = 512, highLatency = 2048;
|
|
unsigned int minChans, maxChans;
|
|
double defaultSr = *defaultSampleRate;
|
|
|
|
assert( pcm );
|
|
|
|
ENSURE_( snd_pcm_nonblock( pcm, 0 ), paUnanticipatedHostError );
|
|
|
|
snd_pcm_hw_params_alloca( &hwParams );
|
|
snd_pcm_hw_params_any( pcm, hwParams );
|
|
|
|
if( defaultSr >= 0 )
|
|
{
|
|
/* Could be that the device opened in one mode supports samplerates that the other mode wont have,
|
|
* so try again .. */
|
|
if( SetApproximateSampleRate( pcm, hwParams, defaultSr ) < 0 )
|
|
{
|
|
defaultSr = -1.;
|
|
PA_DEBUG(( "%s: Original default samplerate failed, trying again ..\n", __FUNCTION__ ));
|
|
}
|
|
}
|
|
|
|
if( defaultSr < 0. ) /* Default sample rate not set */
|
|
{
|
|
unsigned int sampleRate = 44100; /* Will contain approximate rate returned by alsa-lib */
|
|
ENSURE_( snd_pcm_hw_params_set_rate_near( pcm, hwParams, &sampleRate, NULL ), paUnanticipatedHostError );
|
|
ENSURE_( GetExactSampleRate( hwParams, &defaultSr ), paUnanticipatedHostError );
|
|
}
|
|
|
|
ENSURE_( snd_pcm_hw_params_get_channels_min( hwParams, &minChans ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_hw_params_get_channels_max( hwParams, &maxChans ), paUnanticipatedHostError );
|
|
assert( maxChans <= INT_MAX );
|
|
assert( maxChans > 0 ); /* Weird linking issue could cause wrong version of ALSA symbols to be called,
|
|
resulting in zeroed values */
|
|
|
|
/* XXX: Limit to sensible number (ALSA plugins accept a crazy amount of channels)? */
|
|
if( isPlug && maxChans > 128 )
|
|
{
|
|
maxChans = 128;
|
|
PA_DEBUG(( "%s: Limiting number of plugin channels to %u\n", __FUNCTION__, maxChans ));
|
|
}
|
|
|
|
/* TWEAKME:
|
|
*
|
|
* Giving values for default min and max latency is not
|
|
* straightforward. Here are our objectives:
|
|
*
|
|
* * for low latency, we want to give the lowest value
|
|
* that will work reliably. This varies based on the
|
|
* sound card, kernel, CPU, etc. I think it is better
|
|
* to give sub-optimal latency than to give a number
|
|
* too low and cause dropouts. My conservative
|
|
* estimate at this point is to base it on 4096-sample
|
|
* latency at 44.1 kHz, which gives a latency of 23ms.
|
|
* * for high latency we want to give a large enough
|
|
* value that dropouts are basically impossible. This
|
|
* doesn't really require as much tweaking, since
|
|
* providing too large a number will just cause us to
|
|
* select the nearest setting that will work at stream
|
|
* config time.
|
|
*/
|
|
ENSURE_( snd_pcm_hw_params_set_buffer_size_near( pcm, hwParams, &lowLatency ), paUnanticipatedHostError );
|
|
|
|
/* Have to reset hwParams, to set new buffer size */
|
|
ENSURE_( snd_pcm_hw_params_any( pcm, hwParams ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_hw_params_set_buffer_size_near( pcm, hwParams, &highLatency ), paUnanticipatedHostError );
|
|
|
|
*minChannels = (int)minChans;
|
|
*maxChannels = (int)maxChans;
|
|
*defaultSampleRate = defaultSr;
|
|
*defaultLowLatency = (double) lowLatency / *defaultSampleRate;
|
|
*defaultHighLatency = (double) highLatency / *defaultSampleRate;
|
|
|
|
end:
|
|
snd_pcm_close( pcm );
|
|
return result;
|
|
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize device info with invalid values (maxInputChannels and maxOutputChannels are set to zero since these indicate
|
|
* wether input/output is available) */
|
|
static void InitializeDeviceInfo( PaDeviceInfo *deviceInfo )
|
|
{
|
|
deviceInfo->structVersion = -1;
|
|
deviceInfo->name = NULL;
|
|
deviceInfo->hostApi = -1;
|
|
deviceInfo->maxInputChannels = 0;
|
|
deviceInfo->maxOutputChannels = 0;
|
|
deviceInfo->defaultLowInputLatency = -1.;
|
|
deviceInfo->defaultLowOutputLatency = -1.;
|
|
deviceInfo->defaultHighInputLatency = -1.;
|
|
deviceInfo->defaultHighOutputLatency = -1.;
|
|
deviceInfo->defaultSampleRate = -1.;
|
|
}
|
|
|
|
/* Helper struct */
|
|
typedef struct
|
|
{
|
|
char *alsaName;
|
|
char *name;
|
|
int isPlug;
|
|
int hasPlayback;
|
|
int hasCapture;
|
|
} DeviceNames;
|
|
|
|
static PaError PaAlsa_StrDup( PaAlsaHostApiRepresentation *alsaApi,
|
|
char **dst,
|
|
const char *src)
|
|
{
|
|
PaError result = paNoError;
|
|
int len = strlen( src ) + 1;
|
|
|
|
/* PA_DEBUG(("PaStrDup %s %d\n", src, len)); */
|
|
|
|
PA_UNLESS( *dst = (char *)PaUtil_GroupAllocateMemory( alsaApi->allocations, len ),
|
|
paInsufficientMemory );
|
|
strncpy( *dst, src, len );
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/* Disregard standard plugins
|
|
* XXX: Might want to make the "default" plugin available, if we can make it work
|
|
*/
|
|
static int IgnorePlugin( const char *pluginId )
|
|
{
|
|
#define numIgnored 10
|
|
static const char *ignoredPlugins[numIgnored] = {"hw", "plughw", "plug", "default", "dsnoop", "dmix", "tee",
|
|
"file", "null", "shm"};
|
|
int i;
|
|
|
|
for( i = 0; i < numIgnored; ++i )
|
|
{
|
|
if( !strcmp( pluginId, ignoredPlugins[i] ) )
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Build PaDeviceInfo list, ignore devices for which we cannot determine capabilities (possibly busy, sigh) */
|
|
static PaError BuildDeviceList( PaAlsaHostApiRepresentation *alsaApi )
|
|
{
|
|
PaUtilHostApiRepresentation *commonApi = &alsaApi->commonHostApiRep;
|
|
PaAlsaDeviceInfo *deviceInfoArray;
|
|
int cardIdx = -1, devIdx = 0;
|
|
snd_ctl_card_info_t *cardInfo;
|
|
PaError result = paNoError;
|
|
size_t numDeviceNames = 0, maxDeviceNames = 1, i;
|
|
DeviceNames *deviceNames = NULL;
|
|
snd_config_t *topNode = NULL;
|
|
snd_pcm_info_t *pcmInfo;
|
|
int res;
|
|
int blocking = SND_PCM_NONBLOCK;
|
|
char alsaCardName[50];
|
|
if( getenv( "PA_ALSA_INITIALIZE_BLOCK" ) && atoi( getenv( "PA_ALSA_INITIALIZE_BLOCK" ) ) )
|
|
blocking = 0;
|
|
|
|
/* These two will be set to the first working input and output device, respectively */
|
|
commonApi->info.defaultInputDevice = paNoDevice;
|
|
commonApi->info.defaultOutputDevice = paNoDevice;
|
|
|
|
/* count the devices by enumerating all the card numbers */
|
|
|
|
/* snd_card_next() modifies the integer passed to it to be:
|
|
* the index of the first card if the parameter is -1
|
|
* the index of the next card if the parameter is the index of a card
|
|
* -1 if there are no more cards
|
|
*
|
|
* The function itself returns 0 if it succeeded. */
|
|
cardIdx = -1;
|
|
snd_ctl_card_info_alloca( &cardInfo );
|
|
snd_pcm_info_alloca( &pcmInfo );
|
|
while( snd_card_next( &cardIdx ) == 0 && cardIdx >= 0 )
|
|
{
|
|
char *cardName;
|
|
int devIdx = -1;
|
|
snd_ctl_t *ctl;
|
|
char buf[50];
|
|
|
|
snprintf( alsaCardName, sizeof (alsaCardName), "hw:%d", cardIdx );
|
|
|
|
/* Acquire name of card */
|
|
if( snd_ctl_open( &ctl, alsaCardName, 0 ) < 0 )
|
|
continue; /* Unable to open card :( */
|
|
snd_ctl_card_info( ctl, cardInfo );
|
|
|
|
PA_ENSURE( PaAlsa_StrDup( alsaApi, &cardName, snd_ctl_card_info_get_name( cardInfo )) );
|
|
|
|
while( snd_ctl_pcm_next_device( ctl, &devIdx ) == 0 && devIdx >= 0 )
|
|
{
|
|
char *alsaDeviceName, *deviceName;
|
|
size_t len;
|
|
int hasPlayback = 0, hasCapture = 0;
|
|
snprintf( buf, sizeof (buf), "%s:%d,%d", "hw", cardIdx, devIdx );
|
|
|
|
/* Obtain info about this particular device */
|
|
snd_pcm_info_set_device( pcmInfo, devIdx );
|
|
snd_pcm_info_set_subdevice( pcmInfo, 0 );
|
|
snd_pcm_info_set_stream( pcmInfo, SND_PCM_STREAM_CAPTURE );
|
|
if( snd_ctl_pcm_info( ctl, pcmInfo ) >= 0 )
|
|
hasCapture = 1;
|
|
|
|
snd_pcm_info_set_stream( pcmInfo, SND_PCM_STREAM_PLAYBACK );
|
|
if( snd_ctl_pcm_info( ctl, pcmInfo ) >= 0 )
|
|
hasPlayback = 1;
|
|
|
|
if( !hasPlayback && !hasCapture )
|
|
{
|
|
continue; /* Error */
|
|
}
|
|
|
|
/* The length of the string written by snprintf plus terminating 0 */
|
|
len = snprintf( NULL, 0, "%s: %s (%s)", cardName, snd_pcm_info_get_name( pcmInfo ), buf ) + 1;
|
|
PA_UNLESS( deviceName = (char *)PaUtil_GroupAllocateMemory( alsaApi->allocations, len ),
|
|
paInsufficientMemory );
|
|
snprintf( deviceName, len, "%s: %s (%s)", cardName,
|
|
snd_pcm_info_get_name( pcmInfo ), buf );
|
|
|
|
++numDeviceNames;
|
|
if( !deviceNames || numDeviceNames > maxDeviceNames )
|
|
{
|
|
maxDeviceNames *= 2;
|
|
PA_UNLESS( deviceNames = (DeviceNames *) realloc( deviceNames, maxDeviceNames * sizeof (DeviceNames) ),
|
|
paInsufficientMemory );
|
|
}
|
|
|
|
PA_ENSURE( PaAlsa_StrDup( alsaApi, &alsaDeviceName, buf ) );
|
|
|
|
deviceNames[ numDeviceNames - 1 ].alsaName = alsaDeviceName;
|
|
deviceNames[ numDeviceNames - 1 ].name = deviceName;
|
|
deviceNames[ numDeviceNames - 1 ].isPlug = 0;
|
|
deviceNames[ numDeviceNames - 1 ].hasPlayback = hasPlayback;
|
|
deviceNames[ numDeviceNames - 1 ].hasCapture = hasCapture;
|
|
}
|
|
snd_ctl_close( ctl );
|
|
}
|
|
|
|
/* Iterate over plugin devices */
|
|
if( NULL == snd_config )
|
|
{
|
|
/* snd_config_update is called implicitly by some functions, if this hasn't happened snd_config will be NULL (bleh) */
|
|
ENSURE_( snd_config_update(), paUnanticipatedHostError );
|
|
PA_DEBUG(( "Updating snd_config\n" ));
|
|
}
|
|
assert( snd_config );
|
|
if( (res = snd_config_search( snd_config, "pcm", &topNode )) >= 0 )
|
|
{
|
|
snd_config_iterator_t i, next;
|
|
|
|
snd_config_for_each( i, next, topNode )
|
|
{
|
|
const char *tpStr = NULL, *idStr = NULL;
|
|
char *alsaDeviceName, *deviceName;
|
|
snd_config_t *n = snd_config_iterator_entry( i ), *tp = NULL;
|
|
if( snd_config_get_type( n ) != SND_CONFIG_TYPE_COMPOUND )
|
|
continue;
|
|
|
|
ENSURE_( snd_config_search( n, "type", &tp ), paUnanticipatedHostError );
|
|
ENSURE_( snd_config_get_string( tp, &tpStr ), paUnanticipatedHostError );
|
|
|
|
ENSURE_( snd_config_get_id( n, &idStr ), paUnanticipatedHostError );
|
|
if( IgnorePlugin( idStr ) )
|
|
{
|
|
PA_DEBUG(( "%s: Ignoring ALSA plugin device %s of type %s\n", __FUNCTION__, idStr, tpStr ));
|
|
continue;
|
|
}
|
|
|
|
PA_DEBUG(( "%s: Found plugin %s of type %s\n", __FUNCTION__, idStr, tpStr ));
|
|
|
|
PA_UNLESS( alsaDeviceName = (char*)PaUtil_GroupAllocateMemory( alsaApi->allocations,
|
|
strlen(idStr) + 6 ), paInsufficientMemory );
|
|
strcpy( alsaDeviceName, idStr );
|
|
PA_UNLESS( deviceName = (char*)PaUtil_GroupAllocateMemory( alsaApi->allocations,
|
|
strlen(idStr) + 1 ), paInsufficientMemory );
|
|
strcpy( deviceName, idStr );
|
|
|
|
++numDeviceNames;
|
|
if( !deviceNames || numDeviceNames > maxDeviceNames )
|
|
{
|
|
maxDeviceNames *= 2;
|
|
PA_UNLESS( deviceNames = (DeviceNames *) realloc( deviceNames, maxDeviceNames * sizeof (DeviceNames) ),
|
|
paInsufficientMemory );
|
|
}
|
|
|
|
deviceNames[numDeviceNames - 1].alsaName = alsaDeviceName;
|
|
deviceNames[numDeviceNames - 1].name = deviceName;
|
|
deviceNames[numDeviceNames - 1].isPlug = 1;
|
|
deviceNames[numDeviceNames - 1].hasPlayback = 1;
|
|
deviceNames[numDeviceNames - 1].hasCapture = 1;
|
|
}
|
|
}
|
|
else
|
|
PA_DEBUG(( "%s: Iterating over ALSA plugins failed: %s\n", __FUNCTION__, snd_strerror( res ) ));
|
|
|
|
/* allocate deviceInfo memory based on the number of devices */
|
|
PA_UNLESS( commonApi->deviceInfos = (PaDeviceInfo**)PaUtil_GroupAllocateMemory(
|
|
alsaApi->allocations, sizeof(PaDeviceInfo*) * (numDeviceNames) ), paInsufficientMemory );
|
|
|
|
/* allocate all device info structs in a contiguous block */
|
|
PA_UNLESS( deviceInfoArray = (PaAlsaDeviceInfo*)PaUtil_GroupAllocateMemory(
|
|
alsaApi->allocations, sizeof(PaAlsaDeviceInfo) * numDeviceNames ), paInsufficientMemory );
|
|
|
|
/* Loop over list of cards, filling in info, if a device is deemed unavailable (can't get name),
|
|
* it's ignored.
|
|
*/
|
|
/* while( snd_card_next( &cardIdx ) == 0 && cardIdx >= 0 ) */
|
|
for( i = 0, devIdx = 0; i < numDeviceNames; ++i )
|
|
{
|
|
snd_pcm_t *pcm;
|
|
PaAlsaDeviceInfo *deviceInfo = &deviceInfoArray[devIdx];
|
|
PaDeviceInfo *commonDeviceInfo = &deviceInfo->commonDeviceInfo;
|
|
|
|
/* Zero fields */
|
|
InitializeDeviceInfo( commonDeviceInfo );
|
|
|
|
/* to determine device capabilities, we must open the device and query the
|
|
* hardware parameter configuration space */
|
|
|
|
/* Query capture */
|
|
if( deviceNames[i].hasCapture &&
|
|
snd_pcm_open( &pcm, deviceNames[i].alsaName, SND_PCM_STREAM_CAPTURE, blocking ) >= 0 )
|
|
{
|
|
if( GropeDevice( pcm, &deviceInfo->minInputChannels, &commonDeviceInfo->maxInputChannels,
|
|
&commonDeviceInfo->defaultLowInputLatency, &commonDeviceInfo->defaultHighInputLatency,
|
|
&commonDeviceInfo->defaultSampleRate, deviceNames[i].isPlug ) != paNoError )
|
|
continue; /* Error */
|
|
}
|
|
|
|
/* Query playback */
|
|
if( deviceNames[i].hasPlayback &&
|
|
snd_pcm_open( &pcm, deviceNames[i].alsaName, SND_PCM_STREAM_PLAYBACK, blocking ) >= 0 )
|
|
{
|
|
if( GropeDevice( pcm, &deviceInfo->minOutputChannels, &commonDeviceInfo->maxOutputChannels,
|
|
&commonDeviceInfo->defaultLowOutputLatency, &commonDeviceInfo->defaultHighOutputLatency,
|
|
&commonDeviceInfo->defaultSampleRate, deviceNames[i].isPlug ) != paNoError )
|
|
continue; /* Error */
|
|
}
|
|
|
|
commonDeviceInfo->structVersion = 2;
|
|
commonDeviceInfo->hostApi = alsaApi->hostApiIndex;
|
|
commonDeviceInfo->name = deviceNames[i].name;
|
|
deviceInfo->alsaName = deviceNames[i].alsaName;
|
|
deviceInfo->isPlug = deviceNames[i].isPlug;
|
|
|
|
/* A: Storing pointer to PaAlsaDeviceInfo object as pointer to PaDeviceInfo object.
|
|
* Should now be safe to add device info, unless the device supports neither capture nor playback
|
|
*/
|
|
if( commonDeviceInfo->maxInputChannels > 0 || commonDeviceInfo->maxOutputChannels > 0 )
|
|
{
|
|
if( commonApi->info.defaultInputDevice == paNoDevice && commonDeviceInfo->maxInputChannels > 0 )
|
|
commonApi->info.defaultInputDevice = devIdx;
|
|
if( commonApi->info.defaultOutputDevice == paNoDevice && commonDeviceInfo->maxOutputChannels > 0 )
|
|
commonApi->info.defaultOutputDevice = devIdx;
|
|
|
|
commonApi->deviceInfos[devIdx++] = (PaDeviceInfo *) deviceInfo;
|
|
}
|
|
}
|
|
free( deviceNames );
|
|
|
|
commonApi->info.deviceCount = devIdx; /* Number of successfully queried devices */
|
|
|
|
end:
|
|
return result;
|
|
|
|
error:
|
|
/* No particular action */
|
|
goto end;
|
|
}
|
|
|
|
/* Check against known device capabilities */
|
|
static PaError ValidateParameters( const PaStreamParameters *parameters, PaUtilHostApiRepresentation *hostApi, StreamDirection mode )
|
|
{
|
|
PaError result = paNoError;
|
|
int maxChans;
|
|
const PaAlsaDeviceInfo *deviceInfo = NULL;
|
|
assert( parameters );
|
|
|
|
if( parameters->device != paUseHostApiSpecificDeviceSpecification )
|
|
{
|
|
assert( parameters->device < hostApi->info.deviceCount );
|
|
PA_UNLESS( parameters->hostApiSpecificStreamInfo == NULL, paBadIODeviceCombination );
|
|
deviceInfo = GetDeviceInfo( hostApi, parameters->device );
|
|
}
|
|
else
|
|
{
|
|
const PaAlsaStreamInfo *streamInfo = parameters->hostApiSpecificStreamInfo;
|
|
|
|
PA_UNLESS( parameters->device == paUseHostApiSpecificDeviceSpecification, paInvalidDevice );
|
|
PA_UNLESS( streamInfo->size == sizeof (PaAlsaStreamInfo) && streamInfo->version == 1,
|
|
paIncompatibleHostApiSpecificStreamInfo );
|
|
PA_UNLESS( streamInfo->deviceString != NULL, paInvalidDevice );
|
|
|
|
/* Skip further checking */
|
|
return paNoError;
|
|
}
|
|
|
|
assert( deviceInfo );
|
|
assert( parameters->hostApiSpecificStreamInfo == NULL );
|
|
maxChans = (StreamDirection_In == mode ? deviceInfo->commonDeviceInfo.maxInputChannels :
|
|
deviceInfo->commonDeviceInfo.maxOutputChannels);
|
|
PA_UNLESS( parameters->channelCount <= maxChans, paInvalidChannelCount );
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/* Given an open stream, what sample formats are available? */
|
|
static PaSampleFormat GetAvailableFormats( snd_pcm_t *pcm )
|
|
{
|
|
PaSampleFormat available = 0;
|
|
snd_pcm_hw_params_t *hwParams;
|
|
snd_pcm_hw_params_alloca( &hwParams );
|
|
|
|
snd_pcm_hw_params_any( pcm, hwParams );
|
|
|
|
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT ) >= 0)
|
|
available |= paFloat32;
|
|
|
|
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S32 ) >= 0)
|
|
available |= paInt32;
|
|
|
|
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24 ) >= 0)
|
|
available |= paInt24;
|
|
|
|
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S16 ) >= 0)
|
|
available |= paInt16;
|
|
|
|
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U8 ) >= 0)
|
|
available |= paUInt8;
|
|
|
|
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S8 ) >= 0)
|
|
available |= paInt8;
|
|
|
|
return available;
|
|
}
|
|
|
|
static snd_pcm_format_t Pa2AlsaFormat( PaSampleFormat paFormat )
|
|
{
|
|
switch( paFormat )
|
|
{
|
|
case paFloat32:
|
|
return SND_PCM_FORMAT_FLOAT;
|
|
|
|
case paInt16:
|
|
return SND_PCM_FORMAT_S16;
|
|
|
|
case paInt24:
|
|
return SND_PCM_FORMAT_S24;
|
|
|
|
case paInt32:
|
|
return SND_PCM_FORMAT_S32;
|
|
|
|
case paInt8:
|
|
return SND_PCM_FORMAT_S8;
|
|
|
|
case paUInt8:
|
|
return SND_PCM_FORMAT_U8;
|
|
|
|
default:
|
|
return SND_PCM_FORMAT_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
/** Open an ALSA pcm handle.
|
|
*
|
|
* The device to be open can be specified in a custom PaAlsaStreamInfo struct, or it will be a device number. In case of a
|
|
* device number, it maybe specified through an env variable (PA_ALSA_PLUGHW) that we should open the corresponding plugin
|
|
* device.
|
|
*/
|
|
static PaError AlsaOpen( const PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *params, StreamDirection
|
|
streamDir, snd_pcm_t **pcm )
|
|
{
|
|
PaError result = paNoError;
|
|
int ret;
|
|
const char *deviceName = alloca( 50 );
|
|
const PaAlsaDeviceInfo *deviceInfo = NULL;
|
|
PaAlsaStreamInfo *streamInfo = (PaAlsaStreamInfo *)params->hostApiSpecificStreamInfo;
|
|
|
|
if( !streamInfo )
|
|
{
|
|
int usePlug = 0;
|
|
deviceInfo = GetDeviceInfo( hostApi, params->device );
|
|
|
|
/* If device name starts with hw: and PA_ALSA_PLUGHW is 1, we open the plughw device instead */
|
|
if( !strncmp( "hw:", deviceInfo->alsaName, 3 ) && getenv( "PA_ALSA_PLUGHW" ) )
|
|
usePlug = atoi( getenv( "PA_ALSA_PLUGHW" ) );
|
|
if( usePlug )
|
|
snprintf( (char *) deviceName, 50, "plug%s", deviceInfo->alsaName );
|
|
else
|
|
deviceName = deviceInfo->alsaName;
|
|
}
|
|
else
|
|
deviceName = streamInfo->deviceString;
|
|
|
|
PA_DEBUG(( "%s: Opening device %s\n", __FUNCTION__, deviceName ));
|
|
if( (ret = snd_pcm_open( pcm, deviceName, streamDir == StreamDirection_In ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK,
|
|
SND_PCM_NONBLOCK )) < 0 )
|
|
{
|
|
/* Not to be closed */
|
|
*pcm = NULL;
|
|
ENSURE_( ret, ret == -EBUSY ? paDeviceUnavailable : paBadIODeviceCombination );
|
|
}
|
|
ENSURE_( snd_pcm_nonblock( *pcm, 0 ), paUnanticipatedHostError );
|
|
|
|
end:
|
|
return result;
|
|
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
static PaError TestParameters( const PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *parameters,
|
|
double sampleRate, StreamDirection streamDir )
|
|
{
|
|
PaError result = paNoError;
|
|
snd_pcm_t *pcm = NULL;
|
|
PaSampleFormat availableFormats;
|
|
/* We are able to adapt to a number of channels less than what the device supports */
|
|
unsigned int numHostChannels;
|
|
PaSampleFormat hostFormat;
|
|
snd_pcm_hw_params_t *hwParams;
|
|
snd_pcm_hw_params_alloca( &hwParams );
|
|
|
|
if( !parameters->hostApiSpecificStreamInfo )
|
|
{
|
|
const PaAlsaDeviceInfo *devInfo = GetDeviceInfo( hostApi, parameters->device );
|
|
numHostChannels = PA_MAX( parameters->channelCount, StreamDirection_In == streamDir ?
|
|
devInfo->minInputChannels : devInfo->minOutputChannels );
|
|
}
|
|
else
|
|
numHostChannels = parameters->channelCount;
|
|
|
|
PA_ENSURE( AlsaOpen( hostApi, parameters, streamDir, &pcm ) );
|
|
|
|
snd_pcm_hw_params_any( pcm, hwParams );
|
|
|
|
if( SetApproximateSampleRate( pcm, hwParams, sampleRate ) < 0 )
|
|
{
|
|
result = paInvalidSampleRate;
|
|
goto error;
|
|
}
|
|
|
|
if( snd_pcm_hw_params_set_channels( pcm, hwParams, numHostChannels ) < 0 )
|
|
{
|
|
result = paInvalidChannelCount;
|
|
goto error;
|
|
}
|
|
|
|
/* See if we can find a best possible match */
|
|
availableFormats = GetAvailableFormats( pcm );
|
|
PA_ENSURE( hostFormat = PaUtil_SelectClosestAvailableFormat( availableFormats, parameters->sampleFormat ) );
|
|
ENSURE_( snd_pcm_hw_params_set_format( pcm, hwParams, Pa2AlsaFormat( hostFormat ) ), paUnanticipatedHostError );
|
|
|
|
{
|
|
/* It happens that this call fails because the device is busy */
|
|
int ret = 0;
|
|
if( (ret = snd_pcm_hw_params( pcm, hwParams )) < 0)
|
|
{
|
|
ENSURE_( ret, ret == -EBUSY ? paDeviceUnavailable : paUnanticipatedHostError );
|
|
}
|
|
}
|
|
|
|
end:
|
|
if( pcm )
|
|
{
|
|
snd_pcm_close( pcm );
|
|
}
|
|
return result;
|
|
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
|
|
const PaStreamParameters *inputParameters,
|
|
const PaStreamParameters *outputParameters,
|
|
double sampleRate )
|
|
{
|
|
int inputChannelCount = 0, outputChannelCount = 0;
|
|
PaSampleFormat inputSampleFormat, outputSampleFormat;
|
|
PaError result = paFormatIsSupported;
|
|
|
|
if( inputParameters )
|
|
{
|
|
PA_ENSURE( ValidateParameters( inputParameters, hostApi, StreamDirection_In ) );
|
|
|
|
inputChannelCount = inputParameters->channelCount;
|
|
inputSampleFormat = inputParameters->sampleFormat;
|
|
}
|
|
|
|
if( outputParameters )
|
|
{
|
|
PA_ENSURE( ValidateParameters( outputParameters, hostApi, StreamDirection_Out ) );
|
|
|
|
outputChannelCount = outputParameters->channelCount;
|
|
outputSampleFormat = outputParameters->sampleFormat;
|
|
}
|
|
|
|
if( inputChannelCount )
|
|
{
|
|
if( (result = TestParameters( hostApi, inputParameters, sampleRate, StreamDirection_In ))
|
|
!= paNoError )
|
|
goto error;
|
|
}
|
|
if ( outputChannelCount )
|
|
{
|
|
if( (result = TestParameters( hostApi, outputParameters, sampleRate, StreamDirection_Out ))
|
|
!= paNoError )
|
|
goto error;
|
|
}
|
|
|
|
return paFormatIsSupported;
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static PaError PaAlsaStreamComponent_Initialize( PaAlsaStreamComponent *self, PaAlsaHostApiRepresentation *alsaApi,
|
|
const PaStreamParameters *params, StreamDirection streamDir, int callbackMode )
|
|
{
|
|
PaError result = paNoError;
|
|
PaSampleFormat userSampleFormat = params->sampleFormat, hostSampleFormat;
|
|
assert( params->channelCount > 0 );
|
|
|
|
/* Make sure things have an initial value */
|
|
memset( self, 0, sizeof (PaAlsaStreamComponent) );
|
|
|
|
if( NULL == params->hostApiSpecificStreamInfo )
|
|
{
|
|
const PaAlsaDeviceInfo *devInfo = GetDeviceInfo( &alsaApi->commonHostApiRep, params->device );
|
|
self->numHostChannels = PA_MAX( params->channelCount, StreamDirection_In == streamDir ? devInfo->minInputChannels
|
|
: devInfo->minOutputChannels );
|
|
}
|
|
else
|
|
{
|
|
/* We're blissfully unaware of the minimum channelCount */
|
|
self->numHostChannels = params->channelCount;
|
|
}
|
|
|
|
PA_ENSURE( AlsaOpen( &alsaApi->commonHostApiRep, params, streamDir, &self->pcm ) );
|
|
self->nfds = snd_pcm_poll_descriptors_count( self->pcm );
|
|
hostSampleFormat = PaUtil_SelectClosestAvailableFormat( GetAvailableFormats( self->pcm ), userSampleFormat );
|
|
|
|
self->hostSampleFormat = hostSampleFormat;
|
|
self->nativeFormat = Pa2AlsaFormat( hostSampleFormat );
|
|
self->hostInterleaved = self->userInterleaved = !(userSampleFormat & paNonInterleaved);
|
|
self->numUserChannels = params->channelCount;
|
|
self->streamDir = streamDir;
|
|
|
|
if( !callbackMode && !self->userInterleaved )
|
|
{
|
|
/* Pre-allocate non-interleaved user provided buffers */
|
|
PA_UNLESS( self->userBuffers = PaUtil_AllocateMemory( sizeof (void *) * self->numUserChannels ),
|
|
paInsufficientMemory );
|
|
}
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static void PaAlsaStreamComponent_Terminate( PaAlsaStreamComponent *self )
|
|
{
|
|
snd_pcm_close( self->pcm );
|
|
if( self->userBuffers )
|
|
PaUtil_FreeMemory( self->userBuffers );
|
|
}
|
|
|
|
int nearbyint_(float value) {
|
|
if( value - (int)value > .5 )
|
|
return (int)ceil( value );
|
|
return (int)floor( value );
|
|
}
|
|
|
|
/** Initiate configuration, preparing for determining a period size suitable for both capture and playback components.
|
|
*
|
|
*/
|
|
static PaError PaAlsaStreamComponent_InitialConfigure( PaAlsaStreamComponent *self, const PaStreamParameters *params,
|
|
int primeBuffers, snd_pcm_hw_params_t *hwParams, double *sampleRate )
|
|
{
|
|
/* Configuration consists of setting all of ALSA's parameters.
|
|
* These parameters come in two flavors: hardware parameters
|
|
* and software paramters. Hardware parameters will affect
|
|
* the way the device is initialized, software parameters
|
|
* affect the way ALSA interacts with me, the user-level client.
|
|
*/
|
|
|
|
PaError result = paNoError;
|
|
snd_pcm_access_t accessMode, alternateAccessMode;
|
|
int dir = 0;
|
|
snd_pcm_t *pcm = self->pcm;
|
|
double sr = *sampleRate;
|
|
unsigned int minPeriods = 2;
|
|
|
|
/* self->framesPerBuffer = framesPerHostBuffer; */
|
|
|
|
/* ... fill up the configuration space with all possibile
|
|
* combinations of parameters this device will accept */
|
|
ENSURE_( snd_pcm_hw_params_any( pcm, hwParams ), paUnanticipatedHostError );
|
|
|
|
ENSURE_( snd_pcm_hw_params_set_periods_integer( pcm, hwParams ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_hw_params_set_period_size_integer( pcm, hwParams ), paUnanticipatedHostError );
|
|
/* I think there should be at least 2 periods (even though ALSA doesn't appear to enforce this) */
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_set_periods_min( pcm, hwParams, &minPeriods, &dir ), paUnanticipatedHostError );
|
|
|
|
if( self->userInterleaved )
|
|
{
|
|
accessMode = SND_PCM_ACCESS_MMAP_INTERLEAVED;
|
|
alternateAccessMode = SND_PCM_ACCESS_MMAP_NONINTERLEAVED;
|
|
}
|
|
else
|
|
{
|
|
accessMode = SND_PCM_ACCESS_MMAP_NONINTERLEAVED;
|
|
alternateAccessMode = SND_PCM_ACCESS_MMAP_INTERLEAVED;
|
|
}
|
|
/* If requested access mode fails, try alternate mode */
|
|
if( snd_pcm_hw_params_set_access( pcm, hwParams, accessMode ) < 0 )
|
|
{
|
|
ENSURE_( snd_pcm_hw_params_set_access( pcm, hwParams, alternateAccessMode ), paUnanticipatedHostError );
|
|
/* Flip mode */
|
|
self->hostInterleaved = !self->userInterleaved;
|
|
}
|
|
|
|
ENSURE_( snd_pcm_hw_params_set_format( pcm, hwParams, self->nativeFormat ), paUnanticipatedHostError );
|
|
|
|
ENSURE_( SetApproximateSampleRate( pcm, hwParams, sr ), paInvalidSampleRate );
|
|
ENSURE_( GetExactSampleRate( hwParams, &sr ), paUnanticipatedHostError );
|
|
/* reject if there's no sample rate within 1% of the one requested */
|
|
if( (fabs( *sampleRate - sr ) / *sampleRate) > 0.01 )
|
|
{
|
|
PA_DEBUG(("%s: Wanted %f, closest sample rate was %d\n", __FUNCTION__, sampleRate, sr ));
|
|
PA_ENSURE( paInvalidSampleRate );
|
|
}
|
|
|
|
ENSURE_( snd_pcm_hw_params_set_channels( pcm, hwParams, self->numHostChannels ), paInvalidChannelCount );
|
|
|
|
*sampleRate = sr;
|
|
|
|
end:
|
|
return result;
|
|
|
|
error:
|
|
/* No particular action */
|
|
goto end;
|
|
}
|
|
|
|
static PaError PaAlsaStreamComponent_FinishConfigure( PaAlsaStreamComponent *self, snd_pcm_hw_params_t* hwParams,
|
|
const PaStreamParameters *params, int primeBuffers, double sampleRate, PaTime* returnedLatency )
|
|
{
|
|
PaError result = paNoError;
|
|
snd_pcm_sw_params_t* swParams;
|
|
snd_pcm_uframes_t bufSz = 0;
|
|
*returnedLatency = -1.;
|
|
|
|
snd_pcm_sw_params_alloca( &swParams );
|
|
|
|
bufSz = (params->suggestedLatency * sampleRate) + self->framesPerBuffer; /* One period does not count as latency */
|
|
ENSURE_( snd_pcm_hw_params_set_buffer_size_near( self->pcm, hwParams, &bufSz ), paUnanticipatedHostError );
|
|
|
|
/* Set the parameters! */
|
|
ENSURE_( snd_pcm_hw_params( self->pcm, hwParams ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_hw_params_get_buffer_size( hwParams, &self->bufferSize ), paUnanticipatedHostError );
|
|
/* Latency in seconds, one period is not counted as latency */
|
|
*returnedLatency = (self->bufferSize - self->framesPerBuffer) / sampleRate;
|
|
|
|
/* Now software parameters... */
|
|
ENSURE_( snd_pcm_sw_params_current( self->pcm, swParams ), paUnanticipatedHostError );
|
|
|
|
ENSURE_( snd_pcm_sw_params_set_start_threshold( self->pcm, swParams, self->framesPerBuffer ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_sw_params_set_stop_threshold( self->pcm, swParams, self->bufferSize ), paUnanticipatedHostError );
|
|
|
|
/* Silence buffer in the case of underrun */
|
|
if( !primeBuffers ) /* XXX: Make sense? */
|
|
{
|
|
snd_pcm_uframes_t boundary;
|
|
ENSURE_( snd_pcm_sw_params_get_boundary( swParams, &boundary ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_sw_params_set_silence_threshold( self->pcm, swParams, 0 ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_sw_params_set_silence_size( self->pcm, swParams, boundary ), paUnanticipatedHostError );
|
|
}
|
|
|
|
ENSURE_( snd_pcm_sw_params_set_avail_min( self->pcm, swParams, self->framesPerBuffer ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_sw_params_set_xfer_align( self->pcm, swParams, 1 ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_sw_params_set_tstamp_mode( self->pcm, swParams, SND_PCM_TSTAMP_MMAP ), paUnanticipatedHostError );
|
|
|
|
/* Set the parameters! */
|
|
ENSURE_( snd_pcm_sw_params( self->pcm, swParams ), paUnanticipatedHostError );
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static PaError PaAlsaStream_Initialize( PaAlsaStream *self, PaAlsaHostApiRepresentation *alsaApi, const PaStreamParameters *inParams,
|
|
const PaStreamParameters *outParams, double sampleRate, unsigned long framesPerUserBuffer, PaStreamCallback callback,
|
|
PaStreamFlags streamFlags, void *userData )
|
|
{
|
|
PaError result = paNoError;
|
|
assert( self );
|
|
|
|
memset( self, 0, sizeof (PaAlsaStream) );
|
|
|
|
if( NULL != callback )
|
|
{
|
|
PaUtil_InitializeStreamRepresentation( &self->streamRepresentation,
|
|
&alsaApi->callbackStreamInterface,
|
|
callback, userData );
|
|
self->callbackMode = 1;
|
|
}
|
|
else
|
|
{
|
|
PaUtil_InitializeStreamRepresentation( &self->streamRepresentation,
|
|
&alsaApi->blockingStreamInterface,
|
|
NULL, userData );
|
|
}
|
|
|
|
self->framesPerUserBuffer = framesPerUserBuffer;
|
|
self->neverDropInput = streamFlags & paNeverDropInput;
|
|
/* XXX: Ignore paPrimeOutputBuffersUsingStreamCallback untill buffer priming is fully supported in pa_process.c */
|
|
/*
|
|
if( outParams & streamFlags & paPrimeOutputBuffersUsingStreamCallback )
|
|
self->primeBuffers = 1;
|
|
*/
|
|
memset( &self->capture, 0, sizeof (PaAlsaStreamComponent) );
|
|
memset( &self->playback, 0, sizeof (PaAlsaStreamComponent) );
|
|
if( inParams )
|
|
PA_ENSURE( PaAlsaStreamComponent_Initialize( &self->capture, alsaApi, inParams, StreamDirection_In, NULL != callback ) );
|
|
if( outParams )
|
|
PA_ENSURE( PaAlsaStreamComponent_Initialize( &self->playback, alsaApi, outParams, StreamDirection_Out, NULL != callback ) );
|
|
|
|
assert( self->capture.nfds || self->playback.nfds );
|
|
|
|
PA_UNLESS( self->pfds = (struct pollfd*)PaUtil_AllocateMemory( (self->capture.nfds +
|
|
self->playback.nfds) * sizeof (struct pollfd) ), paInsufficientMemory );
|
|
|
|
PaUtil_InitializeCpuLoadMeasurer( &self->cpuLoadMeasurer, sampleRate );
|
|
InitializeThreading( &self->threading, &self->cpuLoadMeasurer );
|
|
ASSERT_CALL_( pthread_mutex_init( &self->stateMtx, NULL ), 0 );
|
|
ASSERT_CALL_( pthread_mutex_init( &self->startMtx, NULL ), 0 );
|
|
ASSERT_CALL_( pthread_cond_init( &self->startCond, NULL ), 0 );
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Free resources associated with stream, and eventually stream itself.
|
|
*
|
|
* Frees allocated memory, and terminates individual StreamComponents.
|
|
*/
|
|
static void PaAlsaStream_Terminate( PaAlsaStream *self )
|
|
{
|
|
assert( self );
|
|
|
|
if( self->capture.pcm )
|
|
{
|
|
PaAlsaStreamComponent_Terminate( &self->capture );
|
|
}
|
|
if( self->playback.pcm )
|
|
{
|
|
PaAlsaStreamComponent_Terminate( &self->playback );
|
|
}
|
|
|
|
PaUtil_FreeMemory( self->pfds );
|
|
ASSERT_CALL_( pthread_mutex_destroy( &self->stateMtx ), 0 );
|
|
ASSERT_CALL_( pthread_mutex_destroy( &self->startMtx ), 0 );
|
|
ASSERT_CALL_( pthread_cond_destroy( &self->startCond ), 0 );
|
|
|
|
PaUtil_FreeMemory( self );
|
|
}
|
|
|
|
/** Calculate polling timeout
|
|
*
|
|
* @param frames Time to wait
|
|
* @return Polling timeout in milliseconds
|
|
*/
|
|
static int CalculatePollTimeout( const PaAlsaStream *stream, unsigned long frames )
|
|
{
|
|
assert( stream->streamRepresentation.streamInfo.sampleRate > 0.0 );
|
|
/* Period in msecs, rounded up */
|
|
return (int)ceil( 1000 * frames / stream->streamRepresentation.streamInfo.sampleRate );
|
|
}
|
|
|
|
static PaError PaAlsaStreamComponent_DetermineFramesPerBuffer( PaAlsaStreamComponent* self, const PaStreamParameters* params,
|
|
unsigned long framesPerUserBuffer, double sampleRate, snd_pcm_hw_params_t* hwParams )
|
|
{
|
|
PaError result = paNoError;
|
|
unsigned long bufferSize = params->suggestedLatency * sampleRate, framesPerHostBuffer;
|
|
int dir = 0;
|
|
|
|
{
|
|
snd_pcm_uframes_t tmp;
|
|
snd_pcm_hw_params_get_buffer_size_min(hwParams, &tmp);
|
|
bufferSize = PA_MAX(bufferSize, tmp);
|
|
snd_pcm_hw_params_get_buffer_size_max(hwParams, &tmp);
|
|
bufferSize = PA_MIN(bufferSize, tmp);
|
|
}
|
|
|
|
assert(bufferSize > 0);
|
|
|
|
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
|
|
{
|
|
/* Preferably the host buffer size should be a multiple of the user buffer size */
|
|
|
|
if( bufferSize > framesPerUserBuffer )
|
|
{
|
|
snd_pcm_uframes_t remainder = bufferSize % framesPerUserBuffer;
|
|
if( remainder > framesPerUserBuffer / 2. )
|
|
bufferSize += framesPerUserBuffer - remainder;
|
|
else
|
|
bufferSize -= remainder;
|
|
|
|
assert( bufferSize % framesPerUserBuffer == 0 );
|
|
}
|
|
else if( framesPerUserBuffer % bufferSize != 0 )
|
|
{
|
|
/* Find a good compromise between user specified latency and buffer size */
|
|
if( bufferSize > framesPerUserBuffer * .75 )
|
|
{
|
|
bufferSize = framesPerUserBuffer;
|
|
}
|
|
else
|
|
{
|
|
snd_pcm_uframes_t newSz = framesPerUserBuffer;
|
|
while( newSz / 2 >= bufferSize )
|
|
{
|
|
if( framesPerUserBuffer % (newSz / 2) != 0 )
|
|
{
|
|
/* No use dividing any further */
|
|
break;
|
|
}
|
|
newSz /= 2;
|
|
}
|
|
bufferSize = newSz;
|
|
}
|
|
|
|
assert( framesPerUserBuffer % bufferSize == 0 );
|
|
}
|
|
}
|
|
|
|
/* Using 5 as a base number of periods, we try to approximate the suggested latency (+1 period),
|
|
finding a combination of period/buffer size which best fits these constraints */
|
|
{
|
|
unsigned numPeriods = 4, maxPeriods = 0;
|
|
/* It may be that the device only supports 2 periods for instance */
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_get_periods_max( hwParams, &maxPeriods, &dir ), paUnanticipatedHostError );
|
|
assert( maxPeriods > 1 );
|
|
/* One period is not counted as latency */
|
|
maxPeriods -= 1;
|
|
numPeriods = PA_MIN( maxPeriods, numPeriods );
|
|
|
|
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
|
|
{
|
|
framesPerHostBuffer = framesPerUserBuffer;
|
|
if( framesPerHostBuffer < bufferSize )
|
|
{
|
|
while( bufferSize / framesPerHostBuffer > numPeriods )
|
|
{
|
|
framesPerHostBuffer *= 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while( bufferSize / framesPerHostBuffer < numPeriods )
|
|
{
|
|
if( framesPerUserBuffer % (framesPerHostBuffer / 2) != 0 )
|
|
{
|
|
/* Can't be divided any further */
|
|
break;
|
|
}
|
|
framesPerHostBuffer /= 2;
|
|
}
|
|
}
|
|
|
|
if( framesPerHostBuffer < framesPerUserBuffer )
|
|
{
|
|
assert( framesPerUserBuffer % framesPerHostBuffer == 0 );
|
|
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
|
|
{
|
|
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer * 2, 0 ) == 0 )
|
|
framesPerHostBuffer *= 2;
|
|
else if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer / 2, 0 ) == 0 )
|
|
framesPerHostBuffer /= 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert( framesPerHostBuffer % framesPerUserBuffer == 0 );
|
|
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
|
|
{
|
|
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer + framesPerUserBuffer, 0 ) == 0 )
|
|
framesPerHostBuffer += framesPerUserBuffer;
|
|
else if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer - framesPerUserBuffer, 0 ) == 0 )
|
|
framesPerHostBuffer -= framesPerUserBuffer;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
framesPerHostBuffer = bufferSize / numPeriods;
|
|
}
|
|
}
|
|
|
|
assert( framesPerHostBuffer > 0 );
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_set_period_size_near( self->pcm, hwParams, &framesPerHostBuffer, &dir ), paUnanticipatedHostError );
|
|
self->framesPerBuffer = framesPerHostBuffer;
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/* We need to determine how many frames per host buffer (period) to use. Our
|
|
* goals are to provide the best possible performance, but also to
|
|
* honor the requested latency settings as closely as we can. Therefore this
|
|
* decision is based on:
|
|
*
|
|
* - the period sizes that playback and/or capture support. The
|
|
* host buffer size has to be one of these.
|
|
* - the number of periods that playback and/or capture support.
|
|
*
|
|
* We want to make period_size*(num_periods-1) to be as close as possible
|
|
* to latency*rate for both playback and capture.
|
|
*
|
|
* This method will determine suitable period sizes for capture and playback handles, and report the maximum number of
|
|
* frames per host buffer. The latter is relevant, in case we should be so unfortunate that the period size differs
|
|
* between capture and playback. If this should happen, the stream's hostBufferSizeMode attribute will be set to
|
|
* paUtilBoundedHostBufferSize, because the best we can do is limit the size of individual host buffers to the upper
|
|
* bound. The size of host buffers scheduled for processing should only matter if the user has specified a buffer size,
|
|
* but when he/she does we must strive for an optimal configuration. By default we'll opt for a fixed host buffer size,
|
|
* which should be fine if the period size is the same for capture and playback. In general, if there is a specified user
|
|
* buffer size, this method tries it best to determine a period size which is a multiple of the user buffer size.
|
|
*
|
|
* The framesPerBuffer attributes of the individual capture and playback components of the stream are set to corresponding
|
|
* values determined here. Since these should be reported as
|
|
*
|
|
* This is one of those blocks of code that will just take a lot of
|
|
* refinement to be any good.
|
|
*
|
|
* In the full-duplex case it is possible that the routine was unable
|
|
* to find a number of frames per buffer acceptable to both devices
|
|
* TODO: Implement an algorithm to find the value closest to acceptance
|
|
* by both devices, to minimize difference between period sizes?
|
|
*/
|
|
static PaError PaAlsaStream_DetermineFramesPerBuffer( PaAlsaStream* self, double sampleRate, const PaStreamParameters* inputParameters,
|
|
const PaStreamParameters* outputParameters, unsigned long framesPerUserBuffer, snd_pcm_hw_params_t* hwParamsCapture,
|
|
snd_pcm_hw_params_t* hwParamsPlayback, PaUtilHostBufferSizeMode* hostBufferSizeMode )
|
|
{
|
|
PaError result = paNoError;
|
|
unsigned long framesPerHostBuffer = 0;
|
|
int dir = 0;
|
|
|
|
if( self->capture.pcm && self->playback.pcm )
|
|
{
|
|
if( framesPerUserBuffer == paFramesPerBufferUnspecified )
|
|
{
|
|
snd_pcm_uframes_t desiredLatency, e, minPeriodSize, maxPeriodSize, optimalPeriodSize, periodSize,
|
|
minCapture, minPlayback, maxCapture, maxPlayback;
|
|
|
|
/* Come up with a common desired latency */
|
|
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_get_period_size_min( hwParamsCapture, &minCapture, &dir ), paUnanticipatedHostError );
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_get_period_size_min( hwParamsPlayback, &minPlayback, &dir ), paUnanticipatedHostError );
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_get_period_size_max( hwParamsCapture, &maxCapture, &dir ), paUnanticipatedHostError );
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_get_period_size_max( hwParamsPlayback, &maxPlayback, &dir ), paUnanticipatedHostError );
|
|
minPeriodSize = PA_MAX( minPlayback, minCapture );
|
|
maxPeriodSize = PA_MIN( maxPlayback, maxCapture );
|
|
PA_UNLESS( minPeriodSize <= maxPeriodSize, paBadIODeviceCombination );
|
|
|
|
desiredLatency = (snd_pcm_uframes_t)(PA_MIN( outputParameters->suggestedLatency, inputParameters->suggestedLatency )
|
|
* sampleRate);
|
|
/* Clamp desiredLatency */
|
|
{
|
|
snd_pcm_uframes_t maxBufferSize;
|
|
snd_pcm_uframes_t maxBufferSizeCapture, maxBufferSizePlayback;
|
|
ENSURE_( snd_pcm_hw_params_get_buffer_size_max( hwParamsCapture, &maxBufferSizeCapture ), paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_hw_params_get_buffer_size_max( hwParamsPlayback, &maxBufferSizePlayback ), paUnanticipatedHostError );
|
|
maxBufferSize = PA_MIN( maxBufferSizeCapture, maxBufferSizePlayback );
|
|
|
|
desiredLatency = PA_MIN( desiredLatency, maxBufferSize );
|
|
}
|
|
|
|
/* Find the closest power of 2 */
|
|
e = ilogb( minPeriodSize );
|
|
if( minPeriodSize & (minPeriodSize - 1) )
|
|
e += 1;
|
|
periodSize = (snd_pcm_uframes_t)pow( 2, e );
|
|
|
|
while( periodSize <= maxPeriodSize )
|
|
{
|
|
if( snd_pcm_hw_params_test_period_size( self->playback.pcm, hwParamsPlayback, periodSize, 0 ) >= 0 &&
|
|
snd_pcm_hw_params_test_period_size( self->capture.pcm, hwParamsCapture, periodSize, 0 ) >= 0 )
|
|
break; /* Ok! */
|
|
|
|
periodSize *= 2;
|
|
}
|
|
|
|
/* 4 periods considered optimal */
|
|
optimalPeriodSize = PA_MAX( desiredLatency / 4, minPeriodSize );
|
|
optimalPeriodSize = PA_MIN( optimalPeriodSize, maxPeriodSize );
|
|
|
|
/* Find the closest power of 2 */
|
|
e = ilogb( optimalPeriodSize );
|
|
if( optimalPeriodSize & (optimalPeriodSize - 1) )
|
|
e += 1;
|
|
optimalPeriodSize = (snd_pcm_uframes_t)pow( 2, e );
|
|
|
|
while( optimalPeriodSize >= periodSize )
|
|
{
|
|
if( snd_pcm_hw_params_test_period_size( self->capture.pcm, hwParamsCapture, optimalPeriodSize, 0 ) < 0 )
|
|
continue;
|
|
if( snd_pcm_hw_params_test_period_size( self->playback.pcm, hwParamsPlayback, optimalPeriodSize, 0 ) >= 0 )
|
|
break;
|
|
optimalPeriodSize /= 2;
|
|
}
|
|
if( optimalPeriodSize > periodSize )
|
|
periodSize = optimalPeriodSize;
|
|
|
|
if( periodSize <= maxPeriodSize )
|
|
{
|
|
/* Looks good, the periodSize _should_ be acceptable by both devices */
|
|
ENSURE_( snd_pcm_hw_params_set_period_size( self->capture.pcm, hwParamsCapture, periodSize, 0 ),
|
|
paUnanticipatedHostError );
|
|
ENSURE_( snd_pcm_hw_params_set_period_size( self->playback.pcm, hwParamsPlayback, periodSize, 0 ),
|
|
paUnanticipatedHostError );
|
|
self->capture.framesPerBuffer = self->playback.framesPerBuffer = periodSize;
|
|
framesPerHostBuffer = periodSize;
|
|
}
|
|
else
|
|
{
|
|
/* Unable to find a common period size, oh well */
|
|
optimalPeriodSize = PA_MAX( desiredLatency / 4, minPeriodSize );
|
|
optimalPeriodSize = PA_MIN( optimalPeriodSize, maxPeriodSize );
|
|
|
|
self->capture.framesPerBuffer = optimalPeriodSize;
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_set_period_size_near( self->capture.pcm, hwParamsCapture, &self->capture.framesPerBuffer, &dir ),
|
|
paUnanticipatedHostError );
|
|
self->playback.framesPerBuffer = optimalPeriodSize;
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_set_period_size_near( self->playback.pcm, hwParamsPlayback, &self->playback.framesPerBuffer, &dir ),
|
|
paUnanticipatedHostError );
|
|
framesPerHostBuffer = PA_MAX( self->capture.framesPerBuffer, self->playback.framesPerBuffer );
|
|
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We choose the simple route and determine a suitable number of frames per buffer for one component of
|
|
* the stream, then we hope that this will work for the other component too (it should!).
|
|
*/
|
|
|
|
unsigned maxPeriods = 0;
|
|
PaAlsaStreamComponent* first = &self->capture, * second = &self->playback;
|
|
const PaStreamParameters* firstStreamParams = inputParameters;
|
|
snd_pcm_hw_params_t* firstHwParams = hwParamsCapture, * secondHwParams = hwParamsPlayback;
|
|
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_get_periods_max( hwParamsPlayback, &maxPeriods, &dir ), paUnanticipatedHostError );
|
|
if( maxPeriods < 4 )
|
|
{
|
|
/* The playback component is tricker to get right, try that first */
|
|
first = &self->playback;
|
|
second = &self->capture;
|
|
firstStreamParams = outputParameters;
|
|
firstHwParams = hwParamsPlayback;
|
|
secondHwParams = hwParamsCapture;
|
|
}
|
|
|
|
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( first, firstStreamParams, framesPerUserBuffer,
|
|
sampleRate, firstHwParams ) );
|
|
|
|
second->framesPerBuffer = first->framesPerBuffer;
|
|
dir = 0;
|
|
ENSURE_( snd_pcm_hw_params_set_period_size_near( second->pcm, secondHwParams, &second->framesPerBuffer, &dir ),
|
|
paUnanticipatedHostError );
|
|
if( self->capture.framesPerBuffer == self->playback.framesPerBuffer )
|
|
{
|
|
framesPerHostBuffer = self->capture.framesPerBuffer;
|
|
}
|
|
else
|
|
{
|
|
framesPerHostBuffer = PA_MAX( self->capture.framesPerBuffer, self->playback.framesPerBuffer );
|
|
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
|
|
}
|
|
}
|
|
}
|
|
else /* half-duplex is a slightly simpler case */
|
|
{
|
|
if( self->capture.pcm )
|
|
{
|
|
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( &self->capture, inputParameters, framesPerUserBuffer,
|
|
sampleRate, hwParamsCapture) );
|
|
framesPerHostBuffer = self->capture.framesPerBuffer;
|
|
}
|
|
else
|
|
{
|
|
assert( self->playback.pcm );
|
|
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( &self->playback, outputParameters, framesPerUserBuffer,
|
|
sampleRate, hwParamsPlayback ) );
|
|
framesPerHostBuffer = self->playback.framesPerBuffer;
|
|
}
|
|
}
|
|
|
|
PA_UNLESS( framesPerHostBuffer != 0, paInternalError );
|
|
self->maxFramesPerHostBuffer = framesPerHostBuffer;
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Set up ALSA stream parameters.
|
|
*
|
|
*/
|
|
static PaError PaAlsaStream_Configure( PaAlsaStream *self, const PaStreamParameters *inParams, const PaStreamParameters*
|
|
outParams, double sampleRate, unsigned long framesPerUserBuffer, double* inputLatency, double* outputLatency,
|
|
PaUtilHostBufferSizeMode* hostBufferSizeMode )
|
|
{
|
|
PaError result = paNoError;
|
|
double realSr = sampleRate;
|
|
snd_pcm_hw_params_t* hwParamsCapture, * hwParamsPlayback;
|
|
|
|
snd_pcm_hw_params_alloca( &hwParamsCapture );
|
|
snd_pcm_hw_params_alloca( &hwParamsPlayback );
|
|
|
|
if( self->capture.pcm )
|
|
PA_ENSURE( PaAlsaStreamComponent_InitialConfigure( &self->capture, inParams, self->primeBuffers, hwParamsCapture,
|
|
&realSr ) );
|
|
if( self->playback.pcm )
|
|
PA_ENSURE( PaAlsaStreamComponent_InitialConfigure( &self->playback, outParams, self->primeBuffers, hwParamsPlayback,
|
|
&realSr ) );
|
|
|
|
PA_ENSURE( PaAlsaStream_DetermineFramesPerBuffer( self, realSr, inParams, outParams, framesPerUserBuffer,
|
|
hwParamsCapture, hwParamsPlayback, hostBufferSizeMode ) );
|
|
|
|
if( self->capture.pcm )
|
|
{
|
|
assert( self->capture.framesPerBuffer != 0 );
|
|
PA_ENSURE( PaAlsaStreamComponent_FinishConfigure( &self->capture, hwParamsCapture, inParams, self->primeBuffers, realSr,
|
|
inputLatency ) );
|
|
PA_DEBUG(( "%s: Capture period size: %lu, latency: %f\n", __FUNCTION__, self->capture.framesPerBuffer, *inputLatency ));
|
|
}
|
|
if( self->playback.pcm )
|
|
{
|
|
assert( self->playback.framesPerBuffer != 0 );
|
|
PA_ENSURE( PaAlsaStreamComponent_FinishConfigure( &self->playback, hwParamsPlayback, outParams, self->primeBuffers, realSr,
|
|
outputLatency ) );
|
|
PA_DEBUG(( "%s: Playback period size: %lu, latency: %f\n", __FUNCTION__, self->playback.framesPerBuffer, *outputLatency ));
|
|
}
|
|
|
|
/* Should be exact now */
|
|
self->streamRepresentation.streamInfo.sampleRate = realSr;
|
|
|
|
/* this will cause the two streams to automatically start/stop/prepare in sync.
|
|
* We only need to execute these operations on one of the pair.
|
|
* A: We don't want to do this on a blocking stream.
|
|
*/
|
|
if( self->callbackMode && self->capture.pcm && self->playback.pcm )
|
|
{
|
|
int err = snd_pcm_link( self->capture.pcm, self->playback.pcm );
|
|
if( err == 0 )
|
|
self->pcmsSynced = 1;
|
|
else
|
|
PA_DEBUG(( "%s: Unable to sync pcms: %s\n", __FUNCTION__, snd_strerror( err ) ));
|
|
}
|
|
|
|
{
|
|
unsigned long minFramesPerHostBuffer = PA_MIN( self->capture.pcm ? self->capture.framesPerBuffer : ULONG_MAX,
|
|
self->playback.pcm ? self->playback.framesPerBuffer : ULONG_MAX );
|
|
self->pollTimeout = CalculatePollTimeout( self, minFramesPerHostBuffer ); /* Period in msecs, rounded up */
|
|
|
|
/* Time before watchdog unthrottles realtime thread == 1/4 of period time in msecs */
|
|
self->threading.throttledSleepTime = (unsigned long) (minFramesPerHostBuffer / sampleRate / 4 * 1000);
|
|
}
|
|
|
|
if( self->callbackMode )
|
|
{
|
|
/* If the user expects a certain number of frames per callback we will either have to rely on block adaption
|
|
* (framesPerHostBuffer is not an integer multiple of framesPerBuffer) or we can simply align the number
|
|
* of host buffer frames with what the user specified */
|
|
if( self->framesPerUserBuffer != paFramesPerBufferUnspecified )
|
|
{
|
|
/* self->alignFrames = 1; */
|
|
|
|
/* Unless the ratio between number of host and user buffer frames is an integer we will have to rely
|
|
* on block adaption */
|
|
/*
|
|
if( framesPerHostBuffer % framesPerBuffer != 0 || (self->capture.pcm && self->playback.pcm &&
|
|
self->capture.framesPerBuffer != self->playback.framesPerBuffer) )
|
|
self->useBlockAdaption = 1;
|
|
else
|
|
self->alignFrames = 1;
|
|
*/
|
|
}
|
|
}
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
|
|
PaStream** s,
|
|
const PaStreamParameters *inputParameters,
|
|
const PaStreamParameters *outputParameters,
|
|
double sampleRate,
|
|
unsigned long framesPerBuffer,
|
|
PaStreamFlags streamFlags,
|
|
PaStreamCallback* callback,
|
|
void *userData )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaHostApiRepresentation *alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
|
|
PaAlsaStream *stream = NULL;
|
|
PaSampleFormat hostInputSampleFormat = 0, hostOutputSampleFormat = 0;
|
|
PaSampleFormat inputSampleFormat = 0, outputSampleFormat = 0;
|
|
int numInputChannels = 0, numOutputChannels = 0;
|
|
PaTime inputLatency, outputLatency;
|
|
PaUtilHostBufferSizeMode hostBufferSizeMode = paUtilFixedHostBufferSize;
|
|
|
|
if( (streamFlags & paPlatformSpecificFlags) != 0 )
|
|
return paInvalidFlag;
|
|
|
|
if( inputParameters )
|
|
{
|
|
PA_ENSURE( ValidateParameters( inputParameters, hostApi, StreamDirection_In ) );
|
|
|
|
numInputChannels = inputParameters->channelCount;
|
|
inputSampleFormat = inputParameters->sampleFormat;
|
|
}
|
|
if( outputParameters )
|
|
{
|
|
PA_ENSURE( ValidateParameters( outputParameters, hostApi, StreamDirection_Out ) );
|
|
|
|
numOutputChannels = outputParameters->channelCount;
|
|
outputSampleFormat = outputParameters->sampleFormat;
|
|
}
|
|
|
|
/* XXX: Why do we support this anyway? */
|
|
if( framesPerBuffer == paFramesPerBufferUnspecified && getenv( "PA_ALSA_PERIODSIZE" ) != NULL )
|
|
{
|
|
PA_DEBUG(( "%s: Getting framesPerBuffer from environment\n", __FUNCTION__ ));
|
|
framesPerBuffer = atoi( getenv("PA_ALSA_PERIODSIZE") );
|
|
}
|
|
|
|
PA_UNLESS( stream = (PaAlsaStream*)PaUtil_AllocateMemory( sizeof(PaAlsaStream) ), paInsufficientMemory );
|
|
PA_ENSURE( PaAlsaStream_Initialize( stream, alsaHostApi, inputParameters, outputParameters, sampleRate,
|
|
framesPerBuffer, callback, streamFlags, userData ) );
|
|
|
|
PA_ENSURE( PaAlsaStream_Configure( stream, inputParameters, outputParameters, sampleRate, framesPerBuffer,
|
|
&inputLatency, &outputLatency, &hostBufferSizeMode ) );
|
|
if( stream->capture.pcm && stream->playback.pcm )
|
|
{
|
|
/* In full-duplex mode, host buffers should be of a fixed size unless we were unable to match the period
|
|
* sizes of the two handles */
|
|
if( hostBufferSizeMode == paUtilFixedHostBufferSize )
|
|
{
|
|
PA_UNLESS( stream->capture.framesPerBuffer == stream->playback.framesPerBuffer, paInternalError );
|
|
}
|
|
else
|
|
{
|
|
assert( hostBufferSizeMode == paUtilBoundedHostBufferSize );
|
|
PA_UNLESS( stream->capture.framesPerBuffer != stream->playback.framesPerBuffer, paInternalError );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( stream->capture.pcm )
|
|
{
|
|
PA_UNLESS( stream->maxFramesPerHostBuffer == stream->capture.framesPerBuffer, paInternalError );
|
|
}
|
|
else
|
|
{
|
|
PA_UNLESS( stream->maxFramesPerHostBuffer == stream->playback.framesPerBuffer, paInternalError );
|
|
}
|
|
}
|
|
hostInputSampleFormat = stream->capture.hostSampleFormat;
|
|
hostOutputSampleFormat = stream->playback.hostSampleFormat;
|
|
|
|
PA_ENSURE( PaUtil_InitializeBufferProcessor( &stream->bufferProcessor,
|
|
numInputChannels, inputSampleFormat, hostInputSampleFormat,
|
|
numOutputChannels, outputSampleFormat, hostOutputSampleFormat,
|
|
sampleRate, streamFlags, framesPerBuffer, stream->maxFramesPerHostBuffer,
|
|
hostBufferSizeMode, callback, userData ) );
|
|
|
|
/* Ok, buffer processor is initialized, now we can deduce it's latency */
|
|
if( numInputChannels > 0 )
|
|
stream->streamRepresentation.streamInfo.inputLatency = inputLatency + PaUtil_GetBufferProcessorInputLatency(
|
|
&stream->bufferProcessor );
|
|
if( numOutputChannels > 0 )
|
|
stream->streamRepresentation.streamInfo.outputLatency = outputLatency + PaUtil_GetBufferProcessorOutputLatency(
|
|
&stream->bufferProcessor );
|
|
|
|
*s = (PaStream*)stream;
|
|
|
|
return result;
|
|
|
|
error:
|
|
if( stream )
|
|
{
|
|
PA_DEBUG(( "%s: Stream in error, terminating\n", __FUNCTION__ ));
|
|
PaAlsaStream_Terminate( stream );
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static PaError CloseStream( PaStream* s )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
|
|
PaUtil_TerminateBufferProcessor( &stream->bufferProcessor );
|
|
PaUtil_TerminateStreamRepresentation( &stream->streamRepresentation );
|
|
|
|
PaAlsaStream_Terminate( stream );
|
|
|
|
return result;
|
|
}
|
|
|
|
static void SilenceBuffer( PaAlsaStream *stream )
|
|
{
|
|
const snd_pcm_channel_area_t *areas;
|
|
snd_pcm_uframes_t frames = (snd_pcm_uframes_t)snd_pcm_avail_update( stream->playback.pcm ), offset;
|
|
|
|
snd_pcm_mmap_begin( stream->playback.pcm, &areas, &offset, &frames );
|
|
snd_pcm_areas_silence( areas, offset, stream->playback.numHostChannels, frames, stream->playback.nativeFormat );
|
|
snd_pcm_mmap_commit( stream->playback.pcm, offset, frames );
|
|
}
|
|
|
|
/** Start/prepare pcm(s) for streaming.
|
|
*
|
|
* Depending on wether the stream is in callback or blocking mode, we will respectively start or simply
|
|
* prepare the playback pcm. If the buffer has _not_ been primed, we will in callback mode prepare and
|
|
* silence the buffer before starting playback. In blocking mode we simply prepare, as the playback will
|
|
* be started automatically as the user writes to output.
|
|
*
|
|
* The capture pcm, however, will simply be prepared and started.
|
|
*
|
|
* PaAlsaStream::startMtx makes sure access is synchronized (useful in callback mode)
|
|
*/
|
|
static PaError AlsaStart( PaAlsaStream *stream, int priming )
|
|
{
|
|
PaError result = paNoError;
|
|
|
|
if( stream->playback.pcm )
|
|
{
|
|
if( stream->callbackMode )
|
|
{
|
|
if( !priming )
|
|
{
|
|
/* Buffer isn't primed, so prepare and silence */
|
|
ENSURE_( snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
|
|
SilenceBuffer( stream );
|
|
}
|
|
ENSURE_( snd_pcm_start( stream->playback.pcm ), paUnanticipatedHostError );
|
|
}
|
|
else
|
|
ENSURE_( snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
|
|
}
|
|
if( stream->capture.pcm && !stream->pcmsSynced )
|
|
{
|
|
ENSURE_( snd_pcm_prepare( stream->capture.pcm ), paUnanticipatedHostError );
|
|
/* For a blocking stream we want to start capture as well, since nothing will happen otherwise */
|
|
ENSURE_( snd_pcm_start( stream->capture.pcm ), paUnanticipatedHostError );
|
|
}
|
|
|
|
end:
|
|
return result;
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
/** Utility function for determining if pcms are in running state.
|
|
*
|
|
*/
|
|
static int IsRunning( PaAlsaStream *stream )
|
|
{
|
|
int result = 0;
|
|
|
|
LockMutex( &stream->stateMtx );
|
|
if( stream->capture.pcm )
|
|
{
|
|
snd_pcm_state_t capture_state = snd_pcm_state( stream->capture.pcm );
|
|
|
|
if( capture_state == SND_PCM_STATE_RUNNING || capture_state == SND_PCM_STATE_XRUN
|
|
|| capture_state == SND_PCM_STATE_DRAINING )
|
|
{
|
|
result = 1;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if( stream->playback.pcm )
|
|
{
|
|
snd_pcm_state_t playback_state = snd_pcm_state( stream->playback.pcm );
|
|
|
|
if( playback_state == SND_PCM_STATE_RUNNING || playback_state == SND_PCM_STATE_XRUN
|
|
|| playback_state == SND_PCM_STATE_DRAINING )
|
|
{
|
|
result = 1;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
end:
|
|
ASSERT_CALL_( UnlockMutex( &stream->stateMtx ), paNoError );
|
|
|
|
return result;
|
|
}
|
|
|
|
static PaError StartStream( PaStream *s )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
int streamStarted = 0; /* So we can know wether we need to take the stream down */
|
|
|
|
/* Ready the processor */
|
|
PaUtil_ResetBufferProcessor( &stream->bufferProcessor );
|
|
|
|
/* Set now, so we can test for activity further down */
|
|
stream->isActive = 1;
|
|
|
|
if( stream->callbackMode )
|
|
{
|
|
int res = 0;
|
|
PaTime pt = PaUtil_GetTime();
|
|
struct timespec ts;
|
|
|
|
PA_ENSURE( CreateCallbackThread( &stream->threading, &CallbackThreadFunc, stream ) );
|
|
streamStarted = 1;
|
|
|
|
/* Wait for stream to be started */
|
|
ts.tv_sec = (time_t) floor( pt + 1 );
|
|
ts.tv_nsec = (long) ((pt - floor( pt )) * 1000000000);
|
|
|
|
/* Since we'll be holding a lock on the startMtx (when not waiting on the condition), IsRunning won't be checking
|
|
* stream state at the same time as the callback thread affects it. We also check IsStreamActive, in the unlikely
|
|
* case the callback thread exits in the meantime (the stream will be considered inactive after the thread exits) */
|
|
PA_ENSURE( LockMutex( &stream->startMtx ) );
|
|
|
|
/* Due to possible spurious wakeups, we enclose in a loop */
|
|
while( !IsRunning( stream ) && IsStreamActive( s ) && !res )
|
|
{
|
|
res = pthread_cond_timedwait( &stream->startCond, &stream->startMtx, &ts );
|
|
}
|
|
PA_ENSURE( UnlockMutex( &stream->startMtx ) );
|
|
|
|
PA_UNLESS( !res || res == ETIMEDOUT, paInternalError );
|
|
PA_DEBUG(( "%s: Waited for %g seconds for stream to start\n", __FUNCTION__, PaUtil_GetTime() - pt ));
|
|
|
|
if( res == ETIMEDOUT )
|
|
{
|
|
PA_ENSURE( paTimedOut );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
PA_ENSURE( AlsaStart( stream, 0 ) );
|
|
streamStarted = 1;
|
|
}
|
|
|
|
end:
|
|
return result;
|
|
error:
|
|
if( streamStarted )
|
|
AbortStream( stream );
|
|
stream->isActive = 0;
|
|
|
|
goto end;
|
|
}
|
|
|
|
static PaError AlsaStop( PaAlsaStream *stream, int abort )
|
|
{
|
|
PaError result = paNoError;
|
|
|
|
if( abort )
|
|
{
|
|
if( stream->playback.pcm )
|
|
{
|
|
ENSURE_( snd_pcm_drop( stream->playback.pcm ), paUnanticipatedHostError );
|
|
}
|
|
if( stream->capture.pcm && !stream->pcmsSynced )
|
|
{
|
|
ENSURE_( snd_pcm_drop( stream->capture.pcm ), paUnanticipatedHostError );
|
|
}
|
|
|
|
PA_DEBUG(( "%s: Dropped frames\n", __FUNCTION__ ));
|
|
}
|
|
else
|
|
{
|
|
if( stream->playback.pcm )
|
|
{
|
|
ENSURE_( snd_pcm_nonblock( stream->playback.pcm, 0 ), paUnanticipatedHostError );
|
|
if( snd_pcm_drain( stream->playback.pcm ) < 0 )
|
|
{
|
|
PA_DEBUG(( "%s: Draining playback handle failed!\n", __FUNCTION__ ));
|
|
}
|
|
}
|
|
if( stream->capture.pcm && !stream->pcmsSynced )
|
|
{
|
|
/* We don't need to retrieve any remaining frames */
|
|
if( snd_pcm_drop( stream->capture.pcm ) < 0 )
|
|
{
|
|
PA_DEBUG(( "%s: Draining capture handle failed!\n", __FUNCTION__ ));
|
|
}
|
|
}
|
|
}
|
|
|
|
end:
|
|
return result;
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
/** Stop or abort stream.
|
|
*
|
|
* If a stream is in callback mode we will have to inspect wether the background thread has
|
|
* finished, or we will have to take it out. In either case we join the thread before
|
|
* returning. In blocking mode, we simply tell ALSA to stop abruptly (abort) or finish
|
|
* buffers (drain)
|
|
*
|
|
* Stream will be considered inactive (!PaAlsaStream::isActive) after a call to this function
|
|
*/
|
|
static PaError RealStop( PaAlsaStream *stream, int abort )
|
|
{
|
|
PaError result = paNoError;
|
|
|
|
/* First deal with the callback thread, cancelling and/or joining
|
|
* it if necessary
|
|
*/
|
|
if( stream->callbackMode )
|
|
{
|
|
PaError threadRes, watchdogRes;
|
|
stream->callbackAbort = abort;
|
|
|
|
if( !abort )
|
|
{
|
|
PA_DEBUG(( "Stopping callback\n" ));
|
|
stream->callbackStop = 1;
|
|
}
|
|
PA_ENSURE( KillCallbackThread( &stream->threading, !abort, &threadRes, &watchdogRes ) );
|
|
if( threadRes != paNoError )
|
|
PA_DEBUG(( "Callback thread returned: %d\n", threadRes ));
|
|
if( watchdogRes != paNoError )
|
|
PA_DEBUG(( "Watchdog thread returned: %d\n", watchdogRes ));
|
|
|
|
stream->callbackStop = 0; /* The deed is done */
|
|
stream->callback_finished = 0;
|
|
}
|
|
else
|
|
{
|
|
PA_ENSURE( AlsaStop( stream, abort ) );
|
|
}
|
|
|
|
stream->isActive = 0;
|
|
|
|
end:
|
|
return result;
|
|
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
static PaError StopStream( PaStream *s )
|
|
{
|
|
return RealStop( (PaAlsaStream *) s, 0 );
|
|
}
|
|
|
|
static PaError AbortStream( PaStream *s )
|
|
{
|
|
return RealStop( (PaAlsaStream * ) s, 1 );
|
|
}
|
|
|
|
/** The stream is considered stopped before StartStream, or AFTER a call to Abort/StopStream (callback
|
|
* returning !paContinue is not considered)
|
|
*
|
|
*/
|
|
static PaError IsStreamStopped( PaStream *s )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream *)s;
|
|
|
|
/* callback_finished indicates we need to join callback thread (ie. in Abort/StopStream) */
|
|
return !IsStreamActive( s ) && !stream->callback_finished;
|
|
}
|
|
|
|
static PaError IsStreamActive( PaStream *s )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
return stream->isActive;
|
|
}
|
|
|
|
static PaTime GetStreamTime( PaStream *s )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
|
|
snd_timestamp_t timestamp;
|
|
snd_pcm_status_t *status;
|
|
snd_pcm_status_alloca( &status );
|
|
|
|
/* TODO: what if we have both? does it really matter? */
|
|
|
|
/* TODO: if running in callback mode, this will mean
|
|
* libasound routines are being called from multiple threads.
|
|
* need to verify that libasound is thread-safe. */
|
|
|
|
if( stream->capture.pcm )
|
|
{
|
|
snd_pcm_status( stream->capture.pcm, status );
|
|
}
|
|
else if( stream->playback.pcm )
|
|
{
|
|
snd_pcm_status( stream->playback.pcm, status );
|
|
}
|
|
|
|
snd_pcm_status_get_tstamp( status, ×tamp );
|
|
return timestamp.tv_sec + (PaTime)timestamp.tv_usec / 1000000.0;
|
|
}
|
|
|
|
static double GetStreamCpuLoad( PaStream* s )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
|
|
return PaUtil_GetCpuLoad( &stream->cpuLoadMeasurer );
|
|
}
|
|
|
|
static int SetApproximateSampleRate( snd_pcm_t *pcm, snd_pcm_hw_params_t *hwParams, double sampleRate )
|
|
{
|
|
unsigned long approx = (unsigned long) sampleRate;
|
|
int dir = 0;
|
|
double fraction = sampleRate - approx;
|
|
|
|
assert( pcm && hwParams );
|
|
|
|
if( fraction > 0.0 )
|
|
{
|
|
if( fraction > 0.5 )
|
|
{
|
|
++approx;
|
|
dir = -1;
|
|
}
|
|
else
|
|
dir = 1;
|
|
}
|
|
|
|
return snd_pcm_hw_params_set_rate( pcm, hwParams, approx, dir );
|
|
}
|
|
|
|
/* Return exact sample rate in param sampleRate */
|
|
static int GetExactSampleRate( snd_pcm_hw_params_t *hwParams, double *sampleRate )
|
|
{
|
|
unsigned int num, den;
|
|
int err;
|
|
|
|
assert( hwParams );
|
|
|
|
err = snd_pcm_hw_params_get_rate_numden( hwParams, &num, &den );
|
|
*sampleRate = (double) num / den;
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Utility functions for blocking/callback interfaces */
|
|
|
|
/* Atomic restart of stream (we don't want the intermediate state visible) */
|
|
static PaError AlsaRestart( PaAlsaStream *stream )
|
|
{
|
|
PaError result = paNoError;
|
|
|
|
PA_ENSURE( LockMutex( &stream->stateMtx ) );
|
|
PA_ENSURE( AlsaStop( stream, 0 ) );
|
|
PA_ENSURE( AlsaStart( stream, 0 ) );
|
|
|
|
PA_DEBUG(( "%s: Restarted audio\n", __FUNCTION__ ));
|
|
|
|
error:
|
|
PA_ENSURE( UnlockMutex( &stream->stateMtx ) );
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Recover from xrun state.
|
|
*
|
|
*/
|
|
static PaError PaAlsaStream_HandleXrun( PaAlsaStream *self )
|
|
{
|
|
PaError result = paNoError;
|
|
snd_pcm_status_t *st;
|
|
PaTime now = PaUtil_GetTime();
|
|
snd_timestamp_t t;
|
|
|
|
snd_pcm_status_alloca( &st );
|
|
|
|
if( self->playback.pcm )
|
|
{
|
|
snd_pcm_status( self->playback.pcm, st );
|
|
if( snd_pcm_status_get_state( st ) == SND_PCM_STATE_XRUN )
|
|
{
|
|
snd_pcm_status_get_trigger_tstamp( st, &t );
|
|
self->underrun = now * 1000 - ((PaTime) t.tv_sec * 1000 + (PaTime) t.tv_usec / 1000);
|
|
}
|
|
}
|
|
if( self->capture.pcm )
|
|
{
|
|
snd_pcm_status( self->capture.pcm, st );
|
|
if( snd_pcm_status_get_state( st ) == SND_PCM_STATE_XRUN )
|
|
{
|
|
snd_pcm_status_get_trigger_tstamp( st, &t );
|
|
self->overrun = now * 1000 - ((PaTime) t.tv_sec * 1000 + (PaTime) t.tv_usec / 1000);
|
|
}
|
|
}
|
|
|
|
PA_ENSURE( AlsaRestart( self ) );
|
|
|
|
end:
|
|
return result;
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
/** Decide if we should continue polling for specified direction, eventually adjust the poll timeout.
|
|
*
|
|
*/
|
|
static PaError ContinuePoll( const PaAlsaStream *stream, StreamDirection streamDir, int *pollTimeout, int *continuePoll )
|
|
{
|
|
PaError result = paNoError;
|
|
snd_pcm_sframes_t delay, margin;
|
|
int err;
|
|
const PaAlsaStreamComponent *component = NULL, *otherComponent = NULL;
|
|
|
|
*continuePoll = 1;
|
|
|
|
if( StreamDirection_In == streamDir )
|
|
{
|
|
component = &stream->capture;
|
|
otherComponent = &stream->playback;
|
|
}
|
|
else
|
|
{
|
|
component = &stream->playback;
|
|
otherComponent = &stream->capture;
|
|
}
|
|
|
|
/* ALSA docs say that negative delay should indicate xrun, but in my experience snd_pcm_delay returns -EPIPE */
|
|
if( (err = snd_pcm_delay( otherComponent->pcm, &delay )) < 0 )
|
|
{
|
|
if( err == -EPIPE )
|
|
{
|
|
/* Xrun */
|
|
*continuePoll = 0;
|
|
goto error;
|
|
}
|
|
|
|
ENSURE_( err, paUnanticipatedHostError );
|
|
}
|
|
|
|
if( StreamDirection_Out == streamDir )
|
|
{
|
|
/* Number of eligible frames before capture overrun */
|
|
delay = otherComponent->bufferSize - delay;
|
|
}
|
|
margin = delay - otherComponent->framesPerBuffer / 2;
|
|
|
|
if( margin < 0 )
|
|
{
|
|
PA_DEBUG(( "%s: Stopping poll for %s\n", __FUNCTION__, StreamDirection_In == streamDir ? "capture" : "playback" ));
|
|
*continuePoll = 0;
|
|
}
|
|
else if( margin < otherComponent->framesPerBuffer )
|
|
{
|
|
*pollTimeout = CalculatePollTimeout( stream, margin );
|
|
PA_DEBUG(( "%s: Trying to poll again for %s frames, pollTimeout: %d\n",
|
|
__FUNCTION__, StreamDirection_In == streamDir ? "capture" : "playback", *pollTimeout ));
|
|
}
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/* Callback interface */
|
|
|
|
static void OnExit( void *data )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream *) data;
|
|
|
|
assert( data );
|
|
|
|
PaUtil_ResetCpuLoadMeasurer( &stream->cpuLoadMeasurer );
|
|
|
|
stream->callback_finished = 1; /* Let the outside world know stream was stopped in callback */
|
|
PA_DEBUG(( "%s: Stopping ALSA handles\n", __FUNCTION__ ));
|
|
AlsaStop( stream, stream->callbackAbort );
|
|
stream->callbackAbort = 0; /* Clear state */
|
|
|
|
PA_DEBUG(( "%s: Stoppage\n", __FUNCTION__ ));
|
|
|
|
/* Eventually notify user all buffers have played */
|
|
if( stream->streamRepresentation.streamFinishedCallback )
|
|
stream->streamRepresentation.streamFinishedCallback( stream->streamRepresentation.userData );
|
|
stream->isActive = 0;
|
|
}
|
|
|
|
static void CalculateTimeInfo( PaAlsaStream *stream, PaStreamCallbackTimeInfo *timeInfo )
|
|
{
|
|
snd_pcm_status_t *capture_status, *playback_status;
|
|
snd_timestamp_t capture_timestamp, playback_timestamp;
|
|
PaTime capture_time = 0., playback_time = 0.;
|
|
|
|
snd_pcm_status_alloca( &capture_status );
|
|
snd_pcm_status_alloca( &playback_status );
|
|
|
|
if( stream->capture.pcm )
|
|
{
|
|
snd_pcm_sframes_t capture_delay;
|
|
|
|
snd_pcm_status( stream->capture.pcm, capture_status );
|
|
snd_pcm_status_get_tstamp( capture_status, &capture_timestamp );
|
|
|
|
capture_time = capture_timestamp.tv_sec +
|
|
((PaTime)capture_timestamp.tv_usec / 1000000.0);
|
|
timeInfo->currentTime = capture_time;
|
|
|
|
capture_delay = snd_pcm_status_get_delay( capture_status );
|
|
timeInfo->inputBufferAdcTime = timeInfo->currentTime -
|
|
(PaTime)capture_delay / stream->streamRepresentation.streamInfo.sampleRate;
|
|
}
|
|
if( stream->playback.pcm )
|
|
{
|
|
snd_pcm_sframes_t playback_delay;
|
|
|
|
snd_pcm_status( stream->playback.pcm, playback_status );
|
|
snd_pcm_status_get_tstamp( playback_status, &playback_timestamp );
|
|
|
|
playback_time = playback_timestamp.tv_sec +
|
|
((PaTime)playback_timestamp.tv_usec / 1000000.0);
|
|
|
|
if( stream->capture.pcm ) /* Full duplex */
|
|
{
|
|
/* Hmm, we have both a playback and a capture timestamp.
|
|
* Hopefully they are the same... */
|
|
if( fabs( capture_time - playback_time ) > 0.01 )
|
|
PA_DEBUG(("Capture time and playback time differ by %f\n", fabs(capture_time-playback_time)));
|
|
}
|
|
else
|
|
timeInfo->currentTime = playback_time;
|
|
|
|
playback_delay = snd_pcm_status_get_delay( playback_status );
|
|
timeInfo->outputBufferDacTime = timeInfo->currentTime +
|
|
(PaTime)playback_delay / stream->streamRepresentation.streamInfo.sampleRate;
|
|
}
|
|
}
|
|
|
|
/** Called after buffer processing is finished.
|
|
*
|
|
* A number of mmapped frames is committed, it is possible that an xrun has occurred in the meantime.
|
|
*
|
|
* @param numFrames The number of frames that has been processed
|
|
* @param xrun Return whether an xrun has occurred
|
|
*/
|
|
static PaError PaAlsaStreamComponent_EndProcessing( PaAlsaStreamComponent *self, unsigned long numFrames, int *xrun )
|
|
{
|
|
PaError result = paNoError;
|
|
int res;
|
|
|
|
/* @concern FullDuplex It is possible that only one direction is marked ready after polling, and processed
|
|
* afterwards
|
|
*/
|
|
if( !self->ready )
|
|
goto end;
|
|
|
|
res = snd_pcm_mmap_commit( self->pcm, self->offset, numFrames );
|
|
if( res == -EPIPE || res == -ESTRPIPE )
|
|
{
|
|
*xrun = 1;
|
|
}
|
|
else
|
|
{
|
|
ENSURE_( res, paUnanticipatedHostError );
|
|
}
|
|
|
|
end:
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/* Extract buffer from channel area */
|
|
static unsigned char *ExtractAddress( const snd_pcm_channel_area_t *area, snd_pcm_uframes_t offset )
|
|
{
|
|
return (unsigned char *) area->addr + (area->first + offset * area->step) / 8;
|
|
}
|
|
|
|
/** Do necessary adaption between user and host channels.
|
|
*
|
|
@concern ChannelAdaption Adapting between user and host channels can involve silencing unused channels and
|
|
duplicating mono information if host outputs come in pairs.
|
|
*/
|
|
static PaError PaAlsaStreamComponent_DoChannelAdaption( PaAlsaStreamComponent *self, PaUtilBufferProcessor *bp, int numFrames )
|
|
{
|
|
PaError result = paNoError;
|
|
unsigned char *p;
|
|
int i;
|
|
int unusedChans = self->numHostChannels - self->numUserChannels;
|
|
unsigned char *src, *dst;
|
|
int convertMono = (self->numHostChannels % 2) == 0 && (self->numUserChannels % 2) != 0;
|
|
|
|
assert( StreamDirection_Out == self->streamDir );
|
|
|
|
if( self->hostInterleaved )
|
|
{
|
|
int swidth = snd_pcm_format_size( self->nativeFormat, 1 );
|
|
unsigned char *buffer = ExtractAddress( self->channelAreas, self->offset );
|
|
|
|
/* Start after the last user channel */
|
|
p = buffer + self->numUserChannels * swidth;
|
|
|
|
if( convertMono )
|
|
{
|
|
/* Convert the last user channel into stereo pair */
|
|
src = buffer + (self->numUserChannels - 1) * swidth;
|
|
for( i = 0; i < numFrames; ++i )
|
|
{
|
|
dst = src + swidth;
|
|
memcpy( dst, src, swidth );
|
|
src += self->numHostChannels * swidth;
|
|
}
|
|
|
|
/* Don't touch the channel we just wrote to */
|
|
p += swidth;
|
|
--unusedChans;
|
|
}
|
|
|
|
if( unusedChans > 0 )
|
|
{
|
|
/* Silence unused output channels */
|
|
for( i = 0; i < numFrames; ++i )
|
|
{
|
|
memset( p, 0, swidth * unusedChans );
|
|
p += self->numHostChannels * swidth;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We extract the last user channel */
|
|
if( convertMono )
|
|
{
|
|
ENSURE_( snd_pcm_area_copy( self->channelAreas + self->numUserChannels, self->offset, self->channelAreas +
|
|
(self->numUserChannels - 1), self->offset, numFrames, self->nativeFormat ), paUnanticipatedHostError );
|
|
--unusedChans;
|
|
}
|
|
if( unusedChans > 0 )
|
|
{
|
|
snd_pcm_areas_silence( self->channelAreas + (self->numHostChannels - unusedChans), self->offset, unusedChans, numFrames,
|
|
self->nativeFormat );
|
|
}
|
|
}
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static PaError PaAlsaStream_EndProcessing( PaAlsaStream *self, unsigned long numFrames, int *xrunOccurred )
|
|
{
|
|
PaError result = paNoError;
|
|
int xrun = 0;
|
|
|
|
if( self->capture.pcm )
|
|
{
|
|
PA_ENSURE( PaAlsaStreamComponent_EndProcessing( &self->capture, numFrames, &xrun ) );
|
|
}
|
|
if( self->playback.pcm )
|
|
{
|
|
if( self->playback.numHostChannels > self->playback.numUserChannels )
|
|
PA_ENSURE( PaAlsaStreamComponent_DoChannelAdaption( &self->playback, &self->bufferProcessor, numFrames ) );
|
|
PA_ENSURE( PaAlsaStreamComponent_EndProcessing( &self->playback, numFrames, &xrun ) );
|
|
}
|
|
|
|
error:
|
|
*xrunOccurred = xrun;
|
|
return result;
|
|
}
|
|
|
|
/** Update the number of available frames.
|
|
*
|
|
*/
|
|
static PaError PaAlsaStreamComponent_GetAvailableFrames( PaAlsaStreamComponent *self, unsigned long *numFrames, int *xrunOccurred )
|
|
{
|
|
PaError result = paNoError;
|
|
snd_pcm_sframes_t framesAvail = snd_pcm_avail_update( self->pcm );
|
|
*xrunOccurred = 0;
|
|
|
|
if( -EPIPE == framesAvail )
|
|
{
|
|
*xrunOccurred = 1;
|
|
framesAvail = 0;
|
|
}
|
|
else
|
|
ENSURE_( framesAvail, paUnanticipatedHostError );
|
|
|
|
*numFrames = framesAvail;
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Fill in pollfd objects.
|
|
*/
|
|
static PaError PaAlsaStreamComponent_BeginPolling( PaAlsaStreamComponent* self, struct pollfd* pfds )
|
|
{
|
|
PaError result = paNoError;
|
|
int ret = snd_pcm_poll_descriptors( self->pcm, pfds, self->nfds );
|
|
(void)ret; /* Prevent unused variable warning if asserts are turned off */
|
|
assert( ret == self->nfds );
|
|
|
|
self->ready = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Examine results from poll().
|
|
*
|
|
* @param pfds pollfds to inspect
|
|
* @param shouldPoll Should we continue to poll
|
|
* @param xrun Has an xrun occurred
|
|
*/
|
|
static PaError PaAlsaStreamComponent_EndPolling( PaAlsaStreamComponent* self, struct pollfd* pfds, int* shouldPoll, int* xrun )
|
|
{
|
|
PaError result = paNoError;
|
|
unsigned short revents;
|
|
|
|
ENSURE_( snd_pcm_poll_descriptors_revents( self->pcm, pfds, self->nfds, &revents ), paUnanticipatedHostError );
|
|
if( revents != 0 )
|
|
{
|
|
if( revents & POLLERR )
|
|
{
|
|
*xrun = 1;
|
|
}
|
|
else
|
|
self->ready = 1;
|
|
|
|
*shouldPoll = 0;
|
|
}
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Return the number of available frames for this stream.
|
|
*
|
|
* @concern FullDuplex The minimum available for the two directions is calculated, it might be desirable to ignore
|
|
* one direction however (not marked ready from poll), so this is controlled by queryCapture and queryPlayback.
|
|
*
|
|
* @param queryCapture Check available for capture
|
|
* @param queryPlayback Check available for playback
|
|
* @param available The returned number of frames
|
|
* @param xrunOccurred Return whether an xrun has occurred
|
|
*/
|
|
static PaError PaAlsaStream_GetAvailableFrames( PaAlsaStream *self, int queryCapture, int queryPlayback, unsigned long
|
|
*available, int *xrunOccurred )
|
|
{
|
|
PaError result = paNoError;
|
|
unsigned long captureFrames, playbackFrames;
|
|
*xrunOccurred = 0;
|
|
|
|
assert( queryCapture || queryPlayback );
|
|
|
|
if( queryCapture )
|
|
{
|
|
assert( self->capture.pcm );
|
|
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &self->capture, &captureFrames, xrunOccurred ) );
|
|
if( *xrunOccurred )
|
|
goto end;
|
|
}
|
|
if( queryPlayback )
|
|
{
|
|
assert( self->playback.pcm );
|
|
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &self->playback, &playbackFrames, xrunOccurred ) );
|
|
if( *xrunOccurred )
|
|
goto end;
|
|
}
|
|
|
|
if( queryCapture && queryPlayback )
|
|
{
|
|
*available = PA_MIN( captureFrames, playbackFrames );
|
|
/*PA_DEBUG(("capture: %lu, playback: %lu, combined: %lu\n", captureFrames, playbackFrames, *available));*/
|
|
}
|
|
else if( queryCapture )
|
|
{
|
|
*available = captureFrames;
|
|
}
|
|
else
|
|
{
|
|
*available = playbackFrames;
|
|
}
|
|
|
|
end:
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Wait for and report available buffer space from ALSA.
|
|
*
|
|
* Unless ALSA reports a minimum of frames available for I/O, we poll the ALSA filedescriptors for more.
|
|
* Both of these operations can uncover xrun conditions.
|
|
*
|
|
* @concern Xruns Both polling and querying available frames can report an xrun condition.
|
|
*
|
|
* @param framesAvail Return the number of available frames
|
|
* @param xrunOccurred Return whether an xrun has occurred
|
|
*/
|
|
static PaError PaAlsaStream_WaitForFrames( PaAlsaStream *self, unsigned long *framesAvail, int *xrunOccurred )
|
|
{
|
|
PaError result = paNoError;
|
|
int pollPlayback = self->playback.pcm != NULL, pollCapture = self->capture.pcm != NULL;
|
|
int pollTimeout = self->pollTimeout;
|
|
int xrun = 0;
|
|
|
|
assert( self );
|
|
assert( framesAvail );
|
|
|
|
if( !self->callbackMode )
|
|
{
|
|
/* In blocking mode we will only wait if necessary */
|
|
PA_ENSURE( PaAlsaStream_GetAvailableFrames( self, self->capture.pcm != NULL, self->playback.pcm != NULL,
|
|
framesAvail, &xrun ) );
|
|
if( xrun )
|
|
{
|
|
goto end;
|
|
}
|
|
|
|
if( *framesAvail > 0 )
|
|
{
|
|
/* Mark pcms ready from poll */
|
|
if( self->capture.pcm )
|
|
self->capture.ready = 1;
|
|
if( self->playback.pcm )
|
|
self->playback.ready = 1;
|
|
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
while( pollPlayback || pollCapture )
|
|
{
|
|
int totalFds = 0;
|
|
struct pollfd *capturePfds = NULL, *playbackPfds = NULL;
|
|
|
|
pthread_testcancel();
|
|
|
|
if( pollCapture )
|
|
{
|
|
capturePfds = self->pfds;
|
|
PA_ENSURE( PaAlsaStreamComponent_BeginPolling( &self->capture, capturePfds ) );
|
|
totalFds += self->capture.nfds;
|
|
}
|
|
if( pollPlayback )
|
|
{
|
|
playbackPfds = self->pfds + (self->capture.pcm ? self->capture.nfds : 0);
|
|
PA_ENSURE( PaAlsaStreamComponent_BeginPolling( &self->playback, playbackPfds ) );
|
|
totalFds += self->playback.nfds;
|
|
}
|
|
|
|
if( poll( self->pfds, totalFds, pollTimeout ) < 0 )
|
|
{
|
|
/* XXX: Depend on preprocessor condition? */
|
|
if( errno == EINTR ) { /* gdb */
|
|
continue;
|
|
}
|
|
|
|
/* TODO: Add macro for checking system calls */
|
|
PA_ENSURE( paInternalError );
|
|
}
|
|
|
|
/* check the return status of our pfds */
|
|
if( pollCapture )
|
|
{
|
|
PA_ENSURE( PaAlsaStreamComponent_EndPolling( &self->capture, capturePfds, &pollCapture, &xrun ) );
|
|
}
|
|
if( pollPlayback )
|
|
{
|
|
PA_ENSURE( PaAlsaStreamComponent_EndPolling( &self->playback, playbackPfds, &pollPlayback, &xrun ) );
|
|
}
|
|
if( xrun )
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* @concern FullDuplex If only one of two pcms is ready we may want to compromise between the two.
|
|
* If there is less than half a period's worth of samples left of frames in the other pcm's buffer we will
|
|
* stop polling.
|
|
*/
|
|
if( self->capture.pcm && self->playback.pcm )
|
|
{
|
|
if( pollCapture && !pollPlayback )
|
|
{
|
|
PA_ENSURE( ContinuePoll( self, StreamDirection_In, &pollTimeout, &pollCapture ) );
|
|
}
|
|
else if( pollPlayback && !pollCapture )
|
|
{
|
|
PA_ENSURE( ContinuePoll( self, StreamDirection_Out, &pollTimeout, &pollPlayback ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
if( !xrun )
|
|
{
|
|
/* Get the number of available frames for the pcms that are marked ready.
|
|
* @concern FullDuplex If only one direction is marked ready (from poll), the number of frames available for
|
|
* the other direction is returned. Output is normally preferred over capture however, so capture frames may be
|
|
* discarded to avoid overrun unless paNeverDropInput is specified.
|
|
*/
|
|
int captureReady = self->capture.pcm ? self->capture.ready : 0,
|
|
playbackReady = self->playback.pcm ? self->playback.ready : 0;
|
|
PA_ENSURE( PaAlsaStream_GetAvailableFrames( self, captureReady, playbackReady, framesAvail, &xrun ) );
|
|
|
|
if( self->capture.pcm && self->playback.pcm )
|
|
{
|
|
if( !self->playback.ready && !self->neverDropInput )
|
|
{
|
|
/* Drop input, a period's worth */
|
|
assert( self->capture.ready );
|
|
PaAlsaStreamComponent_EndProcessing( &self->capture, PA_MIN( self->capture.framesPerBuffer,
|
|
*framesAvail ), &xrun );
|
|
*framesAvail = 0;
|
|
self->capture.ready = 0;
|
|
}
|
|
}
|
|
else if( self->capture.pcm )
|
|
assert( self->capture.ready );
|
|
else
|
|
assert( self->playback.ready );
|
|
}
|
|
|
|
end:
|
|
error:
|
|
if( xrun )
|
|
{
|
|
/* Recover from the xrun state */
|
|
PA_ENSURE( PaAlsaStream_HandleXrun( self ) );
|
|
*framesAvail = 0;
|
|
}
|
|
else
|
|
{
|
|
if( 0 != *framesAvail )
|
|
{
|
|
/* If we're reporting frames eligible for processing, one of the handles better be ready */
|
|
PA_UNLESS( self->capture.ready || self->playback.ready, paInternalError );
|
|
}
|
|
}
|
|
*xrunOccurred = xrun;
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Register per-channel ALSA buffer information with buffer processor.
|
|
*
|
|
* Mmapped buffer space is acquired from ALSA, and registered with the buffer processor. Differences between the
|
|
* number of host and user channels is taken into account.
|
|
*
|
|
* @param numFrames On entrance the number of requested frames, on exit the number of contiguously accessible frames.
|
|
*/
|
|
static PaError PaAlsaStreamComponent_RegisterChannels( PaAlsaStreamComponent *self, PaUtilBufferProcessor *bp,
|
|
unsigned long *numFrames, int *xrun )
|
|
{
|
|
PaError result = paNoError;
|
|
const snd_pcm_channel_area_t *areas, *area;
|
|
void (*setChannel)(PaUtilBufferProcessor *, unsigned int, void *, unsigned int) =
|
|
StreamDirection_In == self->streamDir ? PaUtil_SetInputChannel : PaUtil_SetOutputChannel;
|
|
unsigned char *buffer, *p;
|
|
int i;
|
|
unsigned long framesAvail;
|
|
|
|
/* This _must_ be called before mmap_begin */
|
|
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( self, &framesAvail, xrun ) );
|
|
if( *xrun )
|
|
{
|
|
*numFrames = 0;
|
|
goto end;
|
|
}
|
|
|
|
ENSURE_( snd_pcm_mmap_begin( self->pcm, &areas, &self->offset, numFrames ), paUnanticipatedHostError );
|
|
|
|
if( self->hostInterleaved )
|
|
{
|
|
int swidth = snd_pcm_format_size( self->nativeFormat, 1 );
|
|
|
|
p = buffer = ExtractAddress( areas, self->offset );
|
|
for( i = 0; i < self->numUserChannels; ++i )
|
|
{
|
|
/* We're setting the channels up to userChannels, but the stride will be hostChannels samples */
|
|
setChannel( bp, i, p, self->numHostChannels );
|
|
p += swidth;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < self->numUserChannels; ++i )
|
|
{
|
|
area = areas + i;
|
|
buffer = ExtractAddress( area, self->offset );
|
|
setChannel( bp, i, buffer, 1 );
|
|
}
|
|
}
|
|
|
|
/* @concern ChannelAdaption Buffer address is recorded so we can do some channel adaption later */
|
|
self->channelAreas = (snd_pcm_channel_area_t *)areas;
|
|
|
|
end:
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/** Initiate buffer processing.
|
|
*
|
|
* ALSA buffers are registered with the PA buffer processor and the buffer size (in frames) set.
|
|
*
|
|
* @concern FullDuplex If both directions are being processed, the minimum amount of frames for the two directions is
|
|
* calculated.
|
|
*
|
|
* @param numFrames On entrance the number of available frames, on exit the number of received frames
|
|
* @param xrunOccurred Return whether an xrun has occurred
|
|
*/
|
|
static PaError PaAlsaStream_SetUpBuffers( PaAlsaStream *self, unsigned long *numFrames, int *xrunOccurred )
|
|
{
|
|
PaError result = paNoError;
|
|
unsigned long captureFrames = ULONG_MAX, playbackFrames = ULONG_MAX, commonFrames = 0;
|
|
int xrun = 0;
|
|
|
|
if( *xrunOccurred )
|
|
{
|
|
*numFrames = 0;
|
|
return result;
|
|
}
|
|
/* If we got here at least one of the pcm's should be marked ready */
|
|
PA_UNLESS( self->capture.ready || self->playback.ready, paInternalError );
|
|
|
|
/* Extract per-channel ALSA buffer pointers and register them with the buffer processor.
|
|
* It is possible that a direction is not marked ready however, because it is out of sync with the other.
|
|
*/
|
|
if( self->capture.pcm && self->capture.ready )
|
|
{
|
|
captureFrames = *numFrames;
|
|
PA_ENSURE( PaAlsaStreamComponent_RegisterChannels( &self->capture, &self->bufferProcessor, &captureFrames,
|
|
&xrun ) );
|
|
}
|
|
if( self->playback.pcm && self->playback.ready )
|
|
{
|
|
playbackFrames = *numFrames;
|
|
PA_ENSURE( PaAlsaStreamComponent_RegisterChannels( &self->playback, &self->bufferProcessor, &playbackFrames,
|
|
&xrun ) );
|
|
}
|
|
if( xrun )
|
|
{
|
|
/* Nothing more to do */
|
|
assert( 0 == commonFrames );
|
|
goto end;
|
|
}
|
|
|
|
commonFrames = PA_MIN( captureFrames, playbackFrames );
|
|
/* assert( commonFrames <= *numFrames ); */
|
|
if( commonFrames > *numFrames )
|
|
{
|
|
/* Hmmm ... how come there are more frames available than we requested!? Blah. */
|
|
PA_DEBUG(( "%s: Common available frames are reported to be more than number requested: %lu, %lu, callbackMode: %d\n", __FUNCTION__,
|
|
commonFrames, *numFrames, self->callbackMode ));
|
|
if( self->capture.pcm )
|
|
{
|
|
PA_DEBUG(( "%s: captureFrames: %lu, capture.ready: %d\n", __FUNCTION__, captureFrames, self->capture.ready ));
|
|
}
|
|
if( self->playback.pcm )
|
|
{
|
|
PA_DEBUG(( "%s: playbackFrames: %lu, playback.ready: %d\n", __FUNCTION__, playbackFrames, self->playback.ready ));
|
|
}
|
|
|
|
commonFrames = 0;
|
|
goto end;
|
|
}
|
|
|
|
/* Inform PortAudio of the number of frames we got.
|
|
* @concern FullDuplex We might be experiencing underflow in either end; if its an input underflow, we go on
|
|
* with output. If its output underflow however, depending on the paNeverDropInput flag, we may want to simply
|
|
* discard the excess input or call the callback with paOutputOverflow flagged.
|
|
*/
|
|
if( self->capture.pcm )
|
|
{
|
|
if( self->capture.ready )
|
|
{
|
|
PaUtil_SetInputFrameCount( &self->bufferProcessor, commonFrames );
|
|
}
|
|
else
|
|
{
|
|
/* We have input underflow */
|
|
PaUtil_SetNoInput( &self->bufferProcessor );
|
|
}
|
|
}
|
|
if( self->playback.pcm )
|
|
{
|
|
if( self->playback.ready )
|
|
{
|
|
PaUtil_SetOutputFrameCount( &self->bufferProcessor, commonFrames );
|
|
}
|
|
else
|
|
{
|
|
/* We have output underflow, but keeping input data (paNeverDropInput) */
|
|
assert( self->neverDropInput );
|
|
assert( self->capture.pcm != NULL );
|
|
PA_DEBUG(( "%s: Setting output buffers to NULL\n", __FUNCTION__ ));
|
|
PaUtil_SetNoOutput( &self->bufferProcessor );
|
|
}
|
|
}
|
|
|
|
end:
|
|
*numFrames = commonFrames;
|
|
error:
|
|
if( xrun )
|
|
{
|
|
PA_ENSURE( PaAlsaStream_HandleXrun( self ) );
|
|
*numFrames = 0;
|
|
}
|
|
*xrunOccurred = xrun;
|
|
|
|
return result;
|
|
}
|
|
|
|
/** Callback thread's function.
|
|
*
|
|
* Roughly, the workflow can be described in the following way: The number of available frames that can be processed
|
|
* directly is obtained from ALSA, we then request as much directly accessible memory as possible within this amount
|
|
* from ALSA. The buffer memory is registered with the PA buffer processor and processing is carried out with
|
|
* PaUtil_EndBufferProcessing. Finally, the number of processed frames is reported to ALSA. The processing can
|
|
* happen in several iterations untill we have consumed the known number of available frames (or an xrun is detected).
|
|
*/
|
|
static void *CallbackThreadFunc( void *userData )
|
|
{
|
|
PaError result = paNoError, *pres = NULL;
|
|
PaAlsaStream *stream = (PaAlsaStream*) userData;
|
|
PaStreamCallbackTimeInfo timeInfo = {0, 0, 0};
|
|
snd_pcm_sframes_t startThreshold = 0;
|
|
int callbackResult = paContinue;
|
|
PaStreamCallbackFlags cbFlags = 0; /* We might want to keep state across iterations */
|
|
int streamStarted = 0;
|
|
|
|
assert( stream );
|
|
|
|
callbackThread_ = pthread_self();
|
|
/* Execute OnExit when exiting */
|
|
pthread_cleanup_push( &OnExit, stream );
|
|
|
|
/* Not implemented */
|
|
assert( !stream->primeBuffers );
|
|
|
|
/* @concern StreamStart If the output is being primed the output pcm needs to be prepared, otherwise the
|
|
* stream is started immediately. The latter involves signaling the waiting main thread.
|
|
*/
|
|
if( stream->primeBuffers )
|
|
{
|
|
snd_pcm_sframes_t avail;
|
|
|
|
if( stream->playback.pcm )
|
|
ENSURE_( snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
|
|
if( stream->capture.pcm && !stream->pcmsSynced )
|
|
ENSURE_( snd_pcm_prepare( stream->capture.pcm ), paUnanticipatedHostError );
|
|
|
|
/* We can't be certain that the whole ring buffer is available for priming, but there should be
|
|
* at least one period */
|
|
avail = snd_pcm_avail_update( stream->playback.pcm );
|
|
startThreshold = avail - (avail % stream->playback.framesPerBuffer);
|
|
assert( startThreshold >= stream->playback.framesPerBuffer );
|
|
}
|
|
else
|
|
{
|
|
PA_ENSURE( LockMutex( &stream->startMtx ) );
|
|
PA_ENSURE( AlsaStart( stream, 0 ) ); /* Buffer will be zeroed */
|
|
ENSURE_SYSTEM_( pthread_cond_signal( &stream->startCond ), 0 );
|
|
PA_ENSURE( UnlockMutex( &stream->startMtx ) );
|
|
|
|
streamStarted = 1;
|
|
}
|
|
|
|
while( 1 )
|
|
{
|
|
unsigned long framesAvail, framesGot;
|
|
int xrun = 0;
|
|
|
|
pthread_testcancel();
|
|
|
|
/* @concern StreamStop if the main thread has requested a stop and the stream has not been effectively
|
|
* stopped we signal this condition by modifying callbackResult (we'll want to flush buffered output).
|
|
*/
|
|
if( stream->callbackStop && paContinue == callbackResult )
|
|
{
|
|
PA_DEBUG(( "Setting callbackResult to paComplete\n" ));
|
|
callbackResult = paComplete;
|
|
}
|
|
|
|
if( paContinue != callbackResult )
|
|
{
|
|
stream->callbackAbort = (paAbort == callbackResult);
|
|
if( stream->callbackAbort ||
|
|
/** @concern BlockAdaption: Go on if adaption buffers are empty */
|
|
PaUtil_IsBufferProcessorOutputEmpty( &stream->bufferProcessor ) )
|
|
goto end;
|
|
|
|
PA_DEBUG(( "%s: Flushing buffer processor\n", __FUNCTION__ ));
|
|
/* There is still buffered output that needs to be processed */
|
|
}
|
|
|
|
/* Wait for data to become available, this comes down to polling the ALSA file descriptors untill we have
|
|
* a number of available frames.
|
|
*/
|
|
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
|
|
if( xrun )
|
|
{
|
|
assert( 0 == framesAvail );
|
|
continue;
|
|
|
|
/* XXX: Report xruns to the user? A situation is conceivable where the callback is never invoked due
|
|
* to constant xruns, it might be desirable to notify the user of this.
|
|
*/
|
|
}
|
|
|
|
/* Consume buffer space. Once we have a number of frames available for consumption we must retrieve the
|
|
* mmapped buffers from ALSA, this is contiguously accessible memory however, so we may receive smaller
|
|
* portions at a time than is available as a whole. Therefore we should be prepared to process several
|
|
* chunks successively. The buffers are passed to the PA buffer processor.
|
|
*/
|
|
while( framesAvail > 0 )
|
|
{
|
|
xrun = 0;
|
|
|
|
pthread_testcancel();
|
|
|
|
/** @concern Xruns Under/overflows are to be reported to the callback */
|
|
if( stream->underrun > 0.0 )
|
|
{
|
|
cbFlags |= paOutputUnderflow;
|
|
stream->underrun = 0.0;
|
|
}
|
|
if( stream->overrun > 0.0 )
|
|
{
|
|
cbFlags |= paInputOverflow;
|
|
stream->overrun = 0.0;
|
|
}
|
|
if( stream->capture.pcm && stream->playback.pcm )
|
|
{
|
|
/** @concern FullDuplex It's possible that only one direction is being processed to avoid an
|
|
* under- or overflow, this should be reported correspondingly */
|
|
if( !stream->capture.ready )
|
|
{
|
|
cbFlags |= paInputUnderflow;
|
|
PA_DEBUG(( "%s: Input underflow\n", __FUNCTION__ ));
|
|
}
|
|
else if( !stream->playback.ready )
|
|
{
|
|
cbFlags |= paOutputOverflow;
|
|
PA_DEBUG(( "%s: Output overflow\n", __FUNCTION__ ));
|
|
}
|
|
}
|
|
|
|
CallbackUpdate( &stream->threading );
|
|
CalculateTimeInfo( stream, &timeInfo );
|
|
PaUtil_BeginBufferProcessing( &stream->bufferProcessor, &timeInfo, cbFlags );
|
|
cbFlags = 0;
|
|
|
|
/* CPU load measurement should include processing activivity external to the stream callback */
|
|
PaUtil_BeginCpuLoadMeasurement( &stream->cpuLoadMeasurer );
|
|
|
|
framesGot = framesAvail;
|
|
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
|
|
/* Check the host buffer size against the buffer processor configuration */
|
|
if( stream->bufferProcessor.hostBufferSizeMode == paUtilFixedHostBufferSize )
|
|
{
|
|
/* We've committed to a fixed host buffer size, stick to that */
|
|
framesGot = framesGot >= stream->maxFramesPerHostBuffer ? stream->maxFramesPerHostBuffer : 0;
|
|
}
|
|
else
|
|
{
|
|
/* We've committed to an upper bound on the size of host buffers */
|
|
assert( stream->bufferProcessor.hostBufferSizeMode == paUtilBoundedHostBufferSize );
|
|
framesGot = PA_MIN( framesGot, stream->maxFramesPerHostBuffer );
|
|
}
|
|
framesAvail -= framesGot;
|
|
|
|
if( framesGot > 0 )
|
|
{
|
|
assert( !xrun );
|
|
PaUtil_EndBufferProcessing( &stream->bufferProcessor, &callbackResult );
|
|
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
|
|
}
|
|
PaUtil_EndCpuLoadMeasurement( &stream->cpuLoadMeasurer, framesGot );
|
|
|
|
if( framesGot == 0 )
|
|
{
|
|
if( !xrun )
|
|
{
|
|
PA_DEBUG(( "%s: Received less frames than reported from ALSA, framesAvail: %lu\n", __FUNCTION__,
|
|
framesAvail ));
|
|
}
|
|
|
|
/* Go back to polling for more frames */
|
|
break;
|
|
|
|
}
|
|
|
|
if( paContinue != callbackResult )
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Match pthread_cleanup_push */
|
|
pthread_cleanup_pop( 1 );
|
|
|
|
end:
|
|
PA_DEBUG(( "%s: Thread %d exiting\n ", __FUNCTION__, pthread_self() ));
|
|
pthread_exit( pres );
|
|
|
|
error:
|
|
/* Pass on error code */
|
|
pres = malloc( sizeof (PaError) );
|
|
*pres = result;
|
|
|
|
goto end;
|
|
}
|
|
|
|
/* Blocking interface */
|
|
|
|
static PaError ReadStream( PaStream* s, void *buffer, unsigned long frames )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
unsigned long framesGot, framesAvail;
|
|
void *userBuffer;
|
|
snd_pcm_t *save = stream->playback.pcm;
|
|
|
|
assert( stream );
|
|
|
|
PA_UNLESS( stream->capture.pcm, paCanNotReadFromAnOutputOnlyStream );
|
|
|
|
/* Disregard playback */
|
|
stream->playback.pcm = NULL;
|
|
|
|
if( stream->overrun > 0. )
|
|
{
|
|
result = paInputOverflowed;
|
|
stream->overrun = 0.0;
|
|
}
|
|
|
|
if( stream->capture.userInterleaved )
|
|
{
|
|
userBuffer = buffer;
|
|
}
|
|
else
|
|
{
|
|
/* Copy channels into local array */
|
|
userBuffer = stream->capture.userBuffers;
|
|
memcpy( userBuffer, buffer, sizeof (void *) * stream->capture.numUserChannels );
|
|
}
|
|
|
|
/* Start stream if in prepared state */
|
|
if( snd_pcm_state( stream->capture.pcm ) == SND_PCM_STATE_PREPARED )
|
|
{
|
|
ENSURE_( snd_pcm_start( stream->capture.pcm ), paUnanticipatedHostError );
|
|
}
|
|
|
|
while( frames > 0 )
|
|
{
|
|
int xrun = 0;
|
|
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
|
|
framesGot = PA_MIN( framesAvail, frames );
|
|
|
|
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
|
|
if( framesGot > 0 )
|
|
{
|
|
framesGot = PaUtil_CopyInput( &stream->bufferProcessor, &userBuffer, framesGot );
|
|
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
|
|
frames -= framesGot;
|
|
}
|
|
}
|
|
|
|
end:
|
|
stream->playback.pcm = save;
|
|
return result;
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
static PaError WriteStream( PaStream* s, const void *buffer, unsigned long frames )
|
|
{
|
|
PaError result = paNoError;
|
|
signed long err;
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
snd_pcm_uframes_t framesGot, framesAvail;
|
|
const void *userBuffer;
|
|
snd_pcm_t *save = stream->capture.pcm;
|
|
|
|
assert( stream );
|
|
|
|
PA_UNLESS( stream->playback.pcm, paCanNotWriteToAnInputOnlyStream );
|
|
|
|
/* Disregard capture */
|
|
stream->capture.pcm = NULL;
|
|
|
|
if( stream->underrun > 0. )
|
|
{
|
|
result = paOutputUnderflowed;
|
|
stream->underrun = 0.0;
|
|
}
|
|
|
|
if( stream->playback.userInterleaved )
|
|
userBuffer = buffer;
|
|
else /* Copy channels into local array */
|
|
{
|
|
userBuffer = stream->playback.userBuffers;
|
|
memcpy( (void *)userBuffer, buffer, sizeof (void *) * stream->playback.numUserChannels );
|
|
}
|
|
|
|
while( frames > 0 )
|
|
{
|
|
int xrun = 0;
|
|
snd_pcm_uframes_t hwAvail;
|
|
|
|
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
|
|
framesGot = PA_MIN( framesAvail, frames );
|
|
|
|
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
|
|
if( framesGot > 0 )
|
|
{
|
|
framesGot = PaUtil_CopyOutput( &stream->bufferProcessor, &userBuffer, framesGot );
|
|
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
|
|
frames -= framesGot;
|
|
}
|
|
|
|
/* Start stream after one period of samples worth */
|
|
|
|
/* Frames residing in buffer */
|
|
PA_ENSURE( err = GetStreamWriteAvailable( stream ) );
|
|
framesAvail = err;
|
|
hwAvail = stream->playback.bufferSize - framesAvail;
|
|
|
|
if( snd_pcm_state( stream->playback.pcm ) == SND_PCM_STATE_PREPARED &&
|
|
hwAvail >= stream->playback.framesPerBuffer )
|
|
{
|
|
ENSURE_( snd_pcm_start( stream->playback.pcm ), paUnanticipatedHostError );
|
|
}
|
|
}
|
|
|
|
end:
|
|
stream->capture.pcm = save;
|
|
return result;
|
|
error:
|
|
goto end;
|
|
}
|
|
|
|
/* Return frames available for reading. In the event of an overflow, the capture pcm will be restarted */
|
|
static signed long GetStreamReadAvailable( PaStream* s )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
unsigned long avail;
|
|
int xrun;
|
|
|
|
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->capture, &avail, &xrun ) );
|
|
if( xrun )
|
|
{
|
|
PA_ENSURE( PaAlsaStream_HandleXrun( stream ) );
|
|
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->capture, &avail, &xrun ) );
|
|
if( xrun )
|
|
PA_ENSURE( paInputOverflowed );
|
|
}
|
|
|
|
return (signed long)avail;
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
static signed long GetStreamWriteAvailable( PaStream* s )
|
|
{
|
|
PaError result = paNoError;
|
|
PaAlsaStream *stream = (PaAlsaStream*)s;
|
|
unsigned long avail;
|
|
int xrun;
|
|
|
|
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->playback, &avail, &xrun ) );
|
|
if( xrun )
|
|
{
|
|
snd_pcm_sframes_t savail;
|
|
|
|
PA_ENSURE( PaAlsaStream_HandleXrun( stream ) );
|
|
savail = snd_pcm_avail_update( stream->playback.pcm );
|
|
|
|
/* savail should not contain -EPIPE now, since PaAlsaStream_HandleXrun will only prepare the pcm */
|
|
ENSURE_( savail, paUnanticipatedHostError );
|
|
|
|
avail = (unsigned long) savail;
|
|
}
|
|
|
|
return (signed long)avail;
|
|
|
|
error:
|
|
return result;
|
|
}
|
|
|
|
/* Extensions */
|
|
|
|
/* Initialize host api specific structure */
|
|
void PaAlsa_InitializeStreamInfo( PaAlsaStreamInfo *info )
|
|
{
|
|
info->size = sizeof (PaAlsaStreamInfo);
|
|
info->hostApiType = paALSA;
|
|
info->version = 1;
|
|
info->deviceString = NULL;
|
|
}
|
|
|
|
void PaAlsa_EnableRealtimeScheduling( PaStream *s, int enable )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream *) s;
|
|
stream->threading.rtSched = enable;
|
|
}
|
|
|
|
void PaAlsa_EnableWatchdog( PaStream *s, int enable )
|
|
{
|
|
PaAlsaStream *stream = (PaAlsaStream *) s;
|
|
stream->threading.useWatchdog = enable;
|
|
}
|