WSJT-X/lib/q65_sync.f90

225 lines
6.0 KiB
Fortran

subroutine q65_sync(iwave,nmax,mode_q65,nQSOprogress,nsps,nfqso,ntol, &
xdt,f0,snr1,dat4,snr2,irc)
! Detect and align with the Q65 sync vector, returning time and frequency
! offsets and SNR estimate.
! Input: iwave(0:nmax-1) Raw data
! mode_q65 Tone spacing 1 2 4 8 16 (A-E)
! nsps Samples per symbol at 12000 Sa/s
! nfqso Target frequency (Hz)
! ntol Search range around nfqso (Hz)
! Output: xdt Time offset from nominal (s)
! f0 Frequency of sync tone
! snr1 Relative SNR of sync signal
parameter (NSTEP=8) !Step size nsps/NSTEP
parameter (LN=2176*63) !LN=LL*NN; LL=64*(mode_q65+2), NN=63
character*37 msg,msgsent
integer*2 iwave(0:nmax-1) !Raw data
integer isync(22) !Indices of sync symbols
integer itone(85)
integer codewords(63,64)
integer dat4(13)
integer ijpk(2)
real, allocatable :: s1(:,:) !Symbol spectra, 1/8-symbol steps
real, allocatable :: s3(:,:) !Data-symbol energies s3(LL,63)
real, allocatable :: ccf(:,:) !CCF(freq,lag)
real, allocatable :: ccf1(:) !CCF(freq) at best lag
real s3prob(0:63,63) !Symbol-value probabilities
real sync(85) !sync vector
complex, allocatable :: c0(:) !Complex spectrum of symbol
data isync/1,9,12,13,15,22,23,26,27,33,35,38,46,50,55,60,62,66,69,74,76,85/
data sync(1)/99.0/
save sync
LL=64*(2+mode_q65)
nfft=nsps
df=12000.0/nfft !Freq resolution = baud
istep=nsps/NSTEP
iz=5000.0/df !Uppermost frequency bin, at 5000 Hz
txt=85.0*nsps/12000.0
jz=(txt+1.0)*12000.0/istep !Number of quarter-symbol steps
if(nsps.ge.6912) jz=(txt+2.0)*12000.0/istep !For TR 60 s and higher
ia=ntol/df
allocate(s1(iz,jz))
allocate(s3(-64:LL-65,63))
allocate(c0(0:nfft-1))
allocate(ccf(-ia:ia,-53:214))
allocate(ccf1(-ia:ia))
if(sync(1).eq.99.0) then !Generate the sync vector
sync=-22.0/63.0 !Sync tone OFF
do k=1,22
sync(isync(k))=1.0 !Sync tone ON
enddo
endif
fac=1/32767.0
do j=1,jz !Compute symbol spectra at step size
ia=(j-1)*istep
ib=ia+nsps-1
k=-1
do i=ia,ib,2 !Load iwave data into complex array c0, for r2c FFT
xx=iwave(i)
yy=iwave(i+1)
k=k+1
c0(k)=fac*cmplx(xx,yy)
enddo
c0(k+1:)=0.
call four2a(c0,nfft,1,-1,0) !r2c FFT
do i=1,iz
s1(i,j)=real(c0(i))**2 + aimag(c0(i))**2
enddo
! For large Doppler spreads, should we smooth the spectra here?
! call smo121(s1(1:iz,j),iz)
enddo
i0=nint(nfqso/df) !Target QSO frequency
call pctile(s1(i0-64:i0+192,1:jz),129*jz,40,base)
! s1=s1/base - 1.0
s1=s1/base
! Apply fast AGC
s1max=20.0 !Empirical choice
do j=1,jz
smax=maxval(s1(i0-64:i0+192,j))
if(smax.gt.s1max) s1(i0-64:i0+192,j)=s1(i0-64:i0+192,j)*s1max/smax
enddo
dtstep=nsps/(NSTEP*12000.0) !Step size in seconds
ia=ntol/df
lag1=-1.0/dtstep
lag2=1.0/dtstep + 0.9999
j0=0.5/dtstep
if(nsps.ge.6192) then
j0=1.0/dtstep !Nominal index for start of signal
lag2=4.0/dtstep + 0.9999 !Include EME delays
endif
ccf=0.
do lag=lag1,lag2
do k=1,85
n=NSTEP*(k-1) + 1
j=n+lag+j0
if(j.ge.1 .and. j.le.jz) then
ccf(-ia:ia,lag)=ccf(-ia:ia,lag) + sync(k)*s1(i0-ia:i0+ia,j)
endif
enddo
enddo
ijpk=maxloc(ccf)
ipk=ijpk(1)-ia-1
jpk=ijpk(2)-53-1
f0=nfqso + ipk*df
xdt=jpk*dtstep
sq=0.
nsq=0
do j=lag1,lag2
if(abs(j-jpk).gt.6) then
sq=sq + ccf(ipk,j)**2
nsq=nsq+1
endif
enddo
rms=sqrt(sq/nsq)
smax=ccf(ipk,jpk)
snr1=smax/rms
!######################################################################
! Experimental: Try early list decoding via "Deep Likelihood".
if(nQSOprogress.lt.1) go to 900
snr1a_best=0.
do imsg=1,4
ccf=0.
msg='K1ABC W9XYZ RRR'
if(imsg.eq.2) msg='K1ABC W9XYZ RR73'
if(imsg.eq.3) msg='K1ABC W9XYZ 73'
if(imsg.eq.4) msg='CQ K9AN EN50'
call genq65(msg,0,msgsent,itone,i3,n3)
j=0
do k=1,85
if(sync(k)>0.) cycle
j=j+1
codewords(j,imsg)=itone(k) - 1
enddo
! Compute 2D ccf using all 85 symbols in the list message
do lag=lag1,lag2
do k=1,85
j=j0 + NSTEP*(k-1) + 1 + lag
if(j.ge.1 .and. j.le.jz) then
do i=-ia,ia
ii=i0+itone(k)+i
ccf(i,lag)=ccf(i,lag) + s1(ii,j)
enddo
endif
enddo
enddo
ijpk=maxloc(ccf)
ipk=ijpk(1)-ia-1
jpk=ijpk(2)-53-1
f0a=nfqso + ipk*df
xdta=jpk*dtstep
sq=0.
nsq=0
do j=lag1,lag2
if(abs(j-jpk).gt.6) then
sq=sq + ccf(ipk,j)**2
nsq=nsq+1
endif
enddo
rms=sqrt(sq/nsq)
smax=ccf(ipk,jpk)
snr1a=smax/rms
if(snr1a.gt.snr1a_best) then
snr1a_best=snr1a
imsg_best=imsg
xdta_best=xdta
f0a_best=f0a
endif
enddo ! imsg
if(snr1a_best.gt.2.0) then
xdt=xdta_best
f0=f0a_best
snr1=1.4*snr1a_best
endif
ia=i0+ipk-63
ib=ia+LL-1
j=j0+jpk-5
n=0
do k=1,85
j=j+8
if(sync(k).gt.0.0) then
cycle
endif
n=n+1
s3(-64:LL-65,n)=s1(ia:ib,j)
enddo
nsubmode=0
nFadingModel=1
baud=12000.0/nsps
dat4=0
irc=-2
do ibw=0,10
b90=1.72**ibw
call q65_intrinsics_ff(s3,nsubmode,b90/baud,nFadingModel,s3prob)
call q65_dec_fullaplist(s3,s3prob,codewords,4,esnodb,dat4,plog,irc)
if(irc.ge.0) then
xdt=xdta_best
f0=f0a_best
snr2=esnodb - db(2500.0/baud)
exit
endif
enddo
900 return
end subroutine q65_sync