mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-05 08:51:19 -05:00
880 lines
25 KiB
C
880 lines
25 KiB
C
// q65.c
|
|
// q65 modes encoding/decoding functions
|
|
//
|
|
// (c) 2020 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
|
|
// ------------------------------------------------------------------------------
|
|
// This file is part of the qracodes project, a Forward Error Control
|
|
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
|
|
//
|
|
// qracodes is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
// qracodes is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with qracodes source distribution.
|
|
// If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "q65.h"
|
|
#include "pdmath.h"
|
|
|
|
// Minimum codeword loglikelihood for decoding
|
|
#define Q65_LLH_THRESHOLD -260.0f
|
|
|
|
// This value produce the same WER performance in decode_fullaplist
|
|
// #define Q65_LLH_THRESHOLD -262.0f
|
|
|
|
|
|
static int _q65_crc6(int *x, int sz);
|
|
static void _q65_crc12(int *y, int *x, int sz);
|
|
|
|
|
|
int q65_init(q65_codec_ds *pCodec, const qracode *pqracode)
|
|
{
|
|
// Eb/No value for which we optimize the decoder metric (AWGN/Rayleigh cases)
|
|
const float EbNodBMetric = 2.8f;
|
|
const float EbNoMetric = (float)pow(10,EbNodBMetric/10);
|
|
|
|
float R; // code effective rate (after puncturing)
|
|
int nm; // bits per symbol
|
|
|
|
if (!pCodec)
|
|
return -1; // why do you called me?
|
|
|
|
if (!pqracode)
|
|
return -2; // invalid qra code
|
|
|
|
if (pqracode->M!=64)
|
|
return -3; // q65 supports only codes over GF(64)
|
|
|
|
pCodec->pQraCode = pqracode;
|
|
|
|
// allocate buffers used by encoding/decoding functions
|
|
pCodec->x = (int*)malloc(pqracode->K*sizeof(int));
|
|
pCodec->y = (int*)malloc(pqracode->N*sizeof(int));
|
|
pCodec->qra_v2cmsg = (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
|
|
pCodec->qra_c2vmsg = (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
|
|
pCodec->ix = (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
|
|
pCodec->ex = (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
|
|
|
|
if (pCodec->x== NULL ||
|
|
pCodec->y== NULL ||
|
|
pCodec->qra_v2cmsg== NULL ||
|
|
pCodec->qra_c2vmsg== NULL ||
|
|
pCodec->ix== NULL ||
|
|
pCodec->ex== NULL) {
|
|
q65_free(pCodec);
|
|
return -4; // out of memory
|
|
}
|
|
|
|
// compute and store the AWGN/Rayleigh Es/No ratio for which we optimize
|
|
// the decoder metric
|
|
nm = _q65_get_bits_per_symbol(pqracode);
|
|
R = _q65_get_code_rate(pqracode);
|
|
pCodec->decoderEsNoMetric = 1.0f*nm*R*EbNoMetric;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void q65_free(q65_codec_ds *pCodec)
|
|
{
|
|
if (!pCodec)
|
|
return;
|
|
|
|
// free internal buffers
|
|
if (pCodec->x!=NULL)
|
|
free(pCodec->x);
|
|
|
|
if (pCodec->y!=NULL)
|
|
free(pCodec->y);
|
|
|
|
if (pCodec->qra_v2cmsg!=NULL)
|
|
free(pCodec->qra_v2cmsg);
|
|
|
|
if (pCodec->qra_c2vmsg!=NULL)
|
|
free(pCodec->qra_c2vmsg);
|
|
|
|
if (pCodec->ix!=NULL)
|
|
free(pCodec->ix);
|
|
|
|
if (pCodec->ex!=NULL)
|
|
free(pCodec->ex);
|
|
|
|
pCodec->pQraCode = NULL;
|
|
pCodec->x = NULL;
|
|
pCodec->y = NULL;
|
|
pCodec->qra_v2cmsg = NULL;
|
|
pCodec->qra_c2vmsg = NULL;
|
|
pCodec->qra_v2cmsg = NULL;
|
|
pCodec->ix = NULL;
|
|
pCodec->ex = NULL;
|
|
|
|
return;
|
|
}
|
|
|
|
int q65_encode(const q65_codec_ds *pCodec, int *pOutputCodeword, const int *pInputMsg)
|
|
{
|
|
const qracode *pQraCode;
|
|
int *px;
|
|
int *py;
|
|
int nK;
|
|
int nN;
|
|
|
|
if (!pCodec)
|
|
return -1; // which codec?
|
|
|
|
pQraCode = pCodec->pQraCode;
|
|
px = pCodec->x;
|
|
py = pCodec->y;
|
|
nK = _q65_get_message_length(pQraCode);
|
|
nN = _q65_get_codeword_length(pQraCode);
|
|
|
|
// copy the information symbols into the internal buffer
|
|
memcpy(px,pInputMsg,nK*sizeof(int));
|
|
|
|
// compute and append the appropriate CRC if required
|
|
switch (pQraCode->type) {
|
|
case QRATYPE_NORMAL:
|
|
break;
|
|
case QRATYPE_CRC:
|
|
case QRATYPE_CRCPUNCTURED:
|
|
px[nK] = _q65_crc6(px,nK);
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
_q65_crc12(px+nK,px,nK);
|
|
break;
|
|
default:
|
|
return -2; // code type not supported
|
|
}
|
|
|
|
// encode with the given qra code
|
|
qra_encode(pQraCode,py,px);
|
|
|
|
// puncture the CRC symbols as required
|
|
// and copy the result to the destination buffer
|
|
switch (pQraCode->type) {
|
|
case QRATYPE_NORMAL:
|
|
case QRATYPE_CRC:
|
|
// no puncturing
|
|
memcpy(pOutputCodeword,py,nN*sizeof(int));
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED:
|
|
// strip the single CRC symbol from the encoded codeword
|
|
memcpy(pOutputCodeword,py,nK*sizeof(int)); // copy the systematic symbols
|
|
memcpy(pOutputCodeword+nK,py+nK+1,(nN-nK)*sizeof(int)); // copy the check symbols skipping the CRC symbol
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
// strip the 2 CRC symbols from the encoded codeword
|
|
memcpy(pOutputCodeword,py,nK*sizeof(int)); // copy the systematic symbols
|
|
memcpy(pOutputCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // copy the check symbols skipping the two CRC symbols
|
|
break;
|
|
default:
|
|
return -2; // code type unsupported
|
|
}
|
|
|
|
return 1; // ok
|
|
}
|
|
|
|
int q65_intrinsics(q65_codec_ds *pCodec, float *pIntrinsics, const float *pInputEnergies)
|
|
{
|
|
// compute observations intrinsics probabilities
|
|
// for the AWGN/Rayleigh channels
|
|
|
|
// NOTE:
|
|
// A true Rayleigh channel metric would require that the channel gains were known
|
|
// for each symbol in the codeword. Such gains cannot be estimated reliably when
|
|
// the Es/No ratio is small. Therefore we compute intrinsic probabilities assuming
|
|
// that, on average, these channel gains are unitary.
|
|
// In general it is even difficult to estimate the Es/No ratio for the AWGN channel
|
|
// Therefore we always compute the intrinsic probabilities assuming that the Es/No
|
|
// ratio is known and equal to the constant decoderEsNoMetric. This assumption will
|
|
// generate the true intrinsic probabilities only when the actual Eb/No ratio is
|
|
// equal to this constant. As in all the other cases the probabilities are evaluated
|
|
// with a wrong scaling constant we can expect that the decoder performance at different
|
|
// Es/No will be worse. Anyway, since the EsNoMetric constant has been chosen so that the
|
|
// decoder error rate is about 50%, we obtain almost optimal error rates down to
|
|
// any useful Es/No ratio.
|
|
|
|
const qracode *pQraCode;
|
|
int nN, nBits;
|
|
float EsNoMetric;
|
|
|
|
if (pCodec==NULL)
|
|
return -1; // which codec?
|
|
|
|
pQraCode = pCodec->pQraCode;
|
|
nN = _q65_get_codeword_length(pQraCode);
|
|
nBits = pQraCode->m;
|
|
|
|
EsNoMetric = pCodec->decoderEsNoMetric;
|
|
qra_mfskbesselmetric(pIntrinsics,pInputEnergies,nBits,nN,EsNoMetric);
|
|
|
|
return 1; // success
|
|
}
|
|
|
|
int q65_esnodb(const q65_codec_ds *pCodec, float *pEsNodB, const int *ydec, const float *pInputEnergies)
|
|
{
|
|
// compute average Es/No for the AWGN/Rayleigh channel cases
|
|
|
|
int k,j;
|
|
float sigplusnoise=0;
|
|
float noise=0;
|
|
int nN, nM;
|
|
const float *pIn = pInputEnergies;
|
|
const int *py = ydec;
|
|
float EsNodB;
|
|
|
|
nN = q65_get_codeword_length(pCodec);
|
|
nM = q65_get_alphabet_size(pCodec);
|
|
|
|
for (k=0;k<nN;k++) {
|
|
|
|
for (j=0;j<nM;j++)
|
|
if (j==py[0])
|
|
sigplusnoise += pIn[j];
|
|
else
|
|
noise +=pIn[j];
|
|
|
|
pIn += nM;
|
|
py++;
|
|
}
|
|
|
|
sigplusnoise = sigplusnoise/nN; // average Es+No
|
|
noise = noise/(nN*(nM-1)); // average No
|
|
|
|
if (noise==0.0f)
|
|
EsNodB = 50.0f; // output an arbitrary +50 dB value avoiding division overflows
|
|
else {
|
|
float sig;
|
|
if (sigplusnoise<noise)
|
|
sigplusnoise = 1.316f*noise; // limit the minimum Es/No ratio to -5 dB;
|
|
sig = sigplusnoise-noise;
|
|
EsNodB = 10.0f*log10f(sig/noise);
|
|
}
|
|
|
|
*pEsNodB = EsNodB;
|
|
|
|
return 1;
|
|
}
|
|
|
|
//
|
|
// Fast-fading channel metric ----------------------------------------------
|
|
//
|
|
// Tables of fading energies coefficients for Ts=6912/12000 (QRA64)
|
|
#include "fadengauss.c"
|
|
#include "fadenlorentz.c"
|
|
// As the fading is assumed to be symmetric around the nominal frequency
|
|
// only the leftmost and the central coefficient are stored in the tables.
|
|
// (files have been generated with the Matlab code efgengaussenergy.m and efgenlorentzenergy.m)
|
|
|
|
// Symbol time interval in seconds
|
|
#define TS_QRA64 0.576
|
|
// #define TS_Q65 0.640 // T/R = 60 s
|
|
// The tables are computed assuming that the bin spacing is that of QRA64, that's to say
|
|
// 1/Ts = 12000/6912 Hz, but in Q65 Ts depends on the T/R interval and the table index
|
|
// corresponding to a given B90 must be scaled appropriately.
|
|
// See below.
|
|
|
|
int q65_intrinsics_fastfading(q65_codec_ds *pCodec,
|
|
float *pIntrinsics, // intrinsic symbol probabilities output
|
|
const float *pInputEnergies, // received energies input
|
|
const int submode, // submode idx (0=A ... 4=E)
|
|
const float B90Ts, // spread bandwidth (90% fractional energy)
|
|
const int fadingModel) // 0=Gaussian 1=Lorentzian fade model
|
|
{
|
|
int n, k, j;
|
|
int nM, nN, nBinsPerTone, nBinsPerSymbol, nBinsPerCodeword;
|
|
int hidx, hlen, hhsz, hlast;
|
|
const float *hptr;
|
|
float fTemp, fNoiseVar, sumix, maxlogp;
|
|
float EsNoMetric,B90;
|
|
float *weight;
|
|
const float *pCurSym, *pCurBin;
|
|
float *pCurIx;
|
|
|
|
// printf("pcodec=%08x submode=%d fadingmodel=%d B90Ts=%f\n",pcodec, submode,fadingModel, B90Ts);
|
|
|
|
if (pCodec==NULL)
|
|
return Q65_DECODE_INVPARAMS; // invalid pCodec pointer
|
|
|
|
|
|
if (submode<0 || submode>4)
|
|
return Q65_DECODE_INVPARAMS; // invalid submode
|
|
|
|
// As the symbol duration in q65 is different than in QRA64,
|
|
// the fading tables continue to be valid if the B90Ts parameter
|
|
// is properly scaled to the QRA64 symbol interval
|
|
// Compute index to most appropriate weighting function coefficients
|
|
B90 = B90Ts/TS_QRA64;
|
|
hidx = (int)(logf(B90)/logf(1.09f) - 0.499f);
|
|
|
|
// Unlike in QRA64 we accept any B90, anyway limiting it to
|
|
// the extreme cases (0.9 to 210 Hz approx.)
|
|
if (hidx<0)
|
|
hidx = 0;
|
|
else
|
|
if (hidx > 64)
|
|
hidx=64;
|
|
|
|
// select the appropriate weighting fading coefficients array
|
|
if (fadingModel==0) { // gaussian fading model
|
|
// point to gaussian energy weighting taps
|
|
hlen = glen_tab_gauss[hidx]; // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
|
|
hptr = gptr_tab_gauss[hidx]; // pointer to the first (L+1)/2 coefficients of w fun
|
|
}
|
|
else if (fadingModel==1) {
|
|
// point to lorentzian energy weighting taps
|
|
hlen = glen_tab_lorentz[hidx]; // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
|
|
hptr = gptr_tab_lorentz[hidx]; // pointer to the first (L+1)/2 coefficients of w fun
|
|
}
|
|
else
|
|
return Q65_DECODE_INVPARAMS; // invalid fading model
|
|
|
|
// compute (euristically) the optimal decoder metric accordingly the given spread amount
|
|
// We assume that the decoder 50% decoding threshold is:
|
|
// Es/No(dB) = Es/No(AWGN)(dB) + 8*log(B90)/log(240)(dB)
|
|
// that's to say, at the maximum Doppler spread bandwidth (240 Hz for QRA64)
|
|
// there's a ~8 dB Es/No degradation over the AWGN case
|
|
fTemp = 8.0f*logf(B90)/logf(240.0f); // assumed Es/No degradation for the given fading bandwidth
|
|
EsNoMetric = pCodec->decoderEsNoMetric*powf(10.0f,fTemp/10.0f);
|
|
|
|
nM = q65_get_alphabet_size(pCodec);
|
|
nN = q65_get_codeword_length(pCodec);
|
|
nBinsPerTone = 1<<submode;
|
|
|
|
nBinsPerSymbol = nM*(2+nBinsPerTone);
|
|
nBinsPerCodeword = nN*nBinsPerSymbol;
|
|
|
|
// In the fast fading case , the intrinsic probabilities can be computed only
|
|
// if both the noise spectral density and the average Es/No ratio are known.
|
|
|
|
// Assuming that the energy of a tone is spread, on average, over adjacent bins
|
|
// with the weights given in the precomputed fast-fading tables, it turns out
|
|
// that the probability that the transmitted tone was tone j when we observed
|
|
// the energies En(1)...En(N) is:
|
|
|
|
// prob(tone j| en1....enN) proportional to exp(sum(En(k,j)*w(k)/No))
|
|
// where w(k) = (g(k)*Es/No)/(1 + g(k)*Es/No),
|
|
// g(k) are constant coefficients given on the fading tables,
|
|
// and En(k,j) denotes the Energy at offset k from the central bin of tone j
|
|
|
|
// Therefore we:
|
|
// 1) compute No - the noise spectral density (or noise variance)
|
|
// 2) compute the coefficients w(k) given the coefficient g(k) for the given decodeer Es/No metric
|
|
// 3) compute the logarithm of prob(tone j| en1....enN) which is simply = sum(En(k,j)*w(k)/No
|
|
// 4) subtract from the logarithm of the probabilities their maximum,
|
|
// 5) exponentiate the logarithms
|
|
// 6) normalize the result to a probability distribution dividing each value
|
|
// by the sum of all of them
|
|
|
|
|
|
// Evaluate the average noise spectral density
|
|
fNoiseVar = 0;
|
|
for (k=0;k<nBinsPerCodeword;k++)
|
|
fNoiseVar += pInputEnergies[k];
|
|
fNoiseVar = fNoiseVar/nBinsPerCodeword;
|
|
// The noise spectral density so computed includes also the signal power.
|
|
// Therefore we scale it accordingly to the Es/No assumed by the decoder
|
|
fNoiseVar = fNoiseVar/(1.0f+EsNoMetric/nBinsPerSymbol);
|
|
// The value so computed is an overestimate of the true noise spectral density
|
|
// by the (unknown) factor (1+Es/No(true)/nBinsPerSymbol)/(1+EsNoMetric/nBinsPerSymbol)
|
|
// We will take this factor in account when computing the true Es/No ratio
|
|
|
|
// store in the pCodec structure for later use in the estimation of the Es/No ratio
|
|
pCodec->ffNoiseVar = fNoiseVar;
|
|
pCodec->ffEsNoMetric = EsNoMetric;
|
|
pCodec->nBinsPerTone = nBinsPerTone;
|
|
pCodec->nBinsPerSymbol = nBinsPerSymbol;
|
|
pCodec->nWeights = hlen;
|
|
weight = pCodec->ffWeight;
|
|
|
|
// compute the fast fading weights accordingly to the Es/No ratio
|
|
// for which we compute the exact intrinsics probabilities
|
|
for (k=0;k<hlen;k++) {
|
|
fTemp = hptr[k]*EsNoMetric;
|
|
weight[k] = fTemp/(1.0f+fTemp)/fNoiseVar;
|
|
}
|
|
|
|
// Compute now the instrinsics as indicated above
|
|
pCurSym = pInputEnergies + nM; // point to the central bin of the the first symbol tone
|
|
pCurIx = pIntrinsics; // point to the first intrinsic
|
|
|
|
hhsz = hlen-1; // number of symmetric taps
|
|
hlast = 2*hhsz; // index of the central tap
|
|
|
|
for (n=0;n<nN;n++) { // for each symbol in the message
|
|
|
|
// compute the logarithm of the tone probability
|
|
// as a weighted sum of the pertaining energies
|
|
pCurBin = pCurSym -hlen+1; // point to the first bin of the current symbol
|
|
|
|
maxlogp = 0.0f;
|
|
for (k=0;k<nM;k++) { // for each tone in the current symbol
|
|
// do a symmetric weighted sum
|
|
fTemp = 0.0f;
|
|
for (j=0;j<hhsz;j++)
|
|
fTemp += weight[j]*(pCurBin[j] + pCurBin[hlast-j]);
|
|
fTemp += weight[hhsz]*pCurBin[hhsz];
|
|
|
|
if (fTemp>maxlogp) // keep track of the max
|
|
maxlogp = fTemp;
|
|
pCurIx[k]=fTemp;
|
|
|
|
pCurBin += nBinsPerTone; // next tone
|
|
}
|
|
|
|
// exponentiate and accumulate the normalization constant
|
|
sumix = 0.0f;
|
|
for (k=0;k<nM;k++) {
|
|
fTemp = expf(pCurIx[k]-maxlogp);
|
|
pCurIx[k]=fTemp;
|
|
sumix +=fTemp;
|
|
}
|
|
|
|
// scale to a probability distribution
|
|
sumix = 1.0f/sumix;
|
|
for (k=0;k<nM;k++)
|
|
pCurIx[k] = pCurIx[k]*sumix;
|
|
|
|
pCurSym +=nBinsPerSymbol; // next symbol input energies
|
|
pCurIx +=nM; // next symbol intrinsics
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int q65_esnodb_fastfading(
|
|
const q65_codec_ds *pCodec,
|
|
float *pEsNodB,
|
|
const int *ydec,
|
|
const float *pInputEnergies)
|
|
{
|
|
// Estimate the Es/No ratio of the decoded codeword
|
|
|
|
int n,j;
|
|
int nN, nM, nBinsPerSymbol, nBinsPerTone, nWeights, nTotWeights;
|
|
const float *pCurSym, *pCurTone, *pCurBin;
|
|
float EsPlusWNo,u, minu, ffNoiseVar, ffEsNoMetric;
|
|
|
|
if (pCodec==NULL)
|
|
return Q65_DECODE_INVPARAMS;
|
|
|
|
nN = q65_get_codeword_length(pCodec);
|
|
nM = q65_get_alphabet_size(pCodec);
|
|
|
|
nBinsPerTone = pCodec->nBinsPerTone;
|
|
nBinsPerSymbol = pCodec->nBinsPerSymbol;
|
|
nWeights = pCodec->nWeights;
|
|
ffNoiseVar = pCodec->ffNoiseVar;
|
|
ffEsNoMetric = pCodec->ffEsNoMetric;
|
|
nTotWeights = 2*nWeights-1;
|
|
|
|
// compute symbols energy (noise included) summing the
|
|
// energies pertaining to the decoded symbols in the codeword
|
|
|
|
EsPlusWNo = 0.0f;
|
|
pCurSym = pInputEnergies + nM; // point to first central bin of first symbol tone
|
|
for (n=0;n<nN;n++) {
|
|
pCurTone = pCurSym + ydec[n]*nBinsPerTone; // point to the central bin of the current decoded symbol
|
|
pCurBin = pCurTone - nWeights+1; // point to first bin
|
|
|
|
// sum over all the pertaining bins
|
|
for (j=0;j<nTotWeights;j++)
|
|
EsPlusWNo += pCurBin[j];
|
|
|
|
pCurSym +=nBinsPerSymbol;
|
|
|
|
}
|
|
EsPlusWNo = EsPlusWNo/nN; // Es + nTotWeigths*No
|
|
|
|
|
|
// The noise power ffNoiseVar computed in the q65_intrisics_fastading(...) function
|
|
// is not the true noise power as it includes part of the signal energy.
|
|
// The true noise variance is:
|
|
// No = ffNoiseVar*(1+EsNoMetric/nBinsPerSymbol)/(1+EsNo/nBinsPerSymbol)
|
|
|
|
// Therefore:
|
|
// Es/No = EsPlusWNo/No - W = EsPlusWNo/ffNoiseVar*(1+Es/No/nBinsPerSymbol)/(1+Es/NoMetric/nBinsPerSymbol) - W
|
|
// and:
|
|
// Es/No*(1-u/nBinsPerSymbol) = u-W or Es/No = (u-W)/(1-u/nBinsPerSymbol)
|
|
// where:
|
|
// u = EsPlusNo/ffNoiseVar/(1+EsNoMetric/nBinsPerSymbol)
|
|
|
|
u = EsPlusWNo/(ffNoiseVar*(1+ffEsNoMetric/nBinsPerSymbol));
|
|
|
|
minu = nTotWeights+0.316f;
|
|
if (u<minu)
|
|
u = minu; // Limit the minimum Es/No to -5 dB approx.
|
|
|
|
u = (u-nTotWeights)/(1.0f -u/nBinsPerSymbol); // linear scale Es/No
|
|
*pEsNodB = 10.0f*log10f(u);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
int q65_decode(q65_codec_ds *pCodec, int* pDecodedCodeword, int *pDecodedMsg, const float *pIntrinsics, const int *pAPMask, const int *pAPSymbols)
|
|
{
|
|
const qracode *pQraCode;
|
|
float *ix, *ex;
|
|
int *px;
|
|
int *py;
|
|
int nK, nN, nM,nBits;
|
|
int rc;
|
|
int crc6;
|
|
int crc12[2];
|
|
|
|
if (!pCodec)
|
|
return Q65_DECODE_INVPARAMS; // which codec?
|
|
|
|
pQraCode = pCodec->pQraCode;
|
|
ix = pCodec->ix;
|
|
ex = pCodec->ex;
|
|
|
|
nK = _q65_get_message_length(pQraCode);
|
|
nN = _q65_get_codeword_length(pQraCode);
|
|
nM = pQraCode->M;
|
|
nBits = pQraCode->m;
|
|
|
|
px = pCodec->x;
|
|
py = pCodec->y;
|
|
|
|
// Depuncture intrinsics observations as required by the code type
|
|
switch (pQraCode->type) {
|
|
case QRATYPE_CRCPUNCTURED:
|
|
memcpy(ix,pIntrinsics,nK*nM*sizeof(float)); // information symbols
|
|
pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM); // crc
|
|
memcpy(ix+(nK+1)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float)); // parity checks
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
memcpy(ix,pIntrinsics,nK*nM*sizeof(float)); // information symbols
|
|
pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM); // crc
|
|
pd_init(PD_ROWADDR(ix,nM,nK+1),pd_uniform(nBits),nM); // crc
|
|
memcpy(ix+(nK+2)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float)); // parity checks
|
|
break;
|
|
case QRATYPE_NORMAL:
|
|
case QRATYPE_CRC:
|
|
default:
|
|
// no puncturing
|
|
memcpy(ix,pIntrinsics,nN*nM*sizeof(float)); // as they are
|
|
}
|
|
|
|
// mask the intrinsics with the available a priori knowledge
|
|
if (pAPMask!=NULL)
|
|
_q65_mask(pQraCode,ix,pAPMask,pAPSymbols);
|
|
|
|
|
|
// Compute the extrinsic symbols probabilities with the message-passing algorithm
|
|
// Stop if the extrinsics information does not converges to unity
|
|
// within the given number of iterations
|
|
rc = qra_extrinsic( pQraCode,
|
|
ex,
|
|
ix,
|
|
100,
|
|
pCodec->qra_v2cmsg,
|
|
pCodec->qra_c2vmsg);
|
|
|
|
if (rc<0)
|
|
// failed to converge to a solution
|
|
return Q65_DECODE_FAILED;
|
|
|
|
// decode the information symbols (punctured information symbols included)
|
|
qra_mapdecode(pQraCode,px,ex,ix);
|
|
|
|
// verify CRC match
|
|
|
|
switch (pQraCode->type) {
|
|
case QRATYPE_CRC:
|
|
case QRATYPE_CRCPUNCTURED:
|
|
crc6=_q65_crc6(px,nK); // compute crc-6
|
|
if (crc6!=px[nK])
|
|
return Q65_DECODE_CRCMISMATCH; // crc doesn't match
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
_q65_crc12(crc12, px,nK); // compute crc-12
|
|
if (crc12[0]!=px[nK] ||
|
|
crc12[1]!=px[nK+1])
|
|
return Q65_DECODE_CRCMISMATCH; // crc doesn't match
|
|
break;
|
|
case QRATYPE_NORMAL:
|
|
default:
|
|
// nothing to check
|
|
break;
|
|
}
|
|
|
|
// copy the decoded msg to the user buffer (excluding punctured symbols)
|
|
if (pDecodedMsg)
|
|
memcpy(pDecodedMsg,px,nK*sizeof(int));
|
|
|
|
#ifndef Q65_CHECKLLH
|
|
if (pDecodedCodeword==NULL) // user is not interested in the decoded codeword
|
|
return rc; // return the number of iterations required to decode
|
|
#else
|
|
if (pDecodedCodeword==NULL) // we must have a buffer
|
|
return Q65_DECODE_INVPARAMS; // return error
|
|
#endif
|
|
|
|
// crc matches therefore we can reconstruct the transmitted codeword
|
|
// reencoding the information available in px...
|
|
|
|
qra_encode(pQraCode, py, px);
|
|
|
|
// ...and strip the punctured symbols from the codeword
|
|
switch (pQraCode->type) {
|
|
case QRATYPE_CRCPUNCTURED:
|
|
memcpy(pDecodedCodeword,py,nK*sizeof(int));
|
|
memcpy(pDecodedCodeword+nK,py+nK+1,(nN-nK)*sizeof(int)); // puncture crc-6 symbol
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
memcpy(pDecodedCodeword,py,nK*sizeof(int));
|
|
memcpy(pDecodedCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // puncture crc-12 symbols
|
|
break;
|
|
case QRATYPE_CRC:
|
|
case QRATYPE_NORMAL:
|
|
default:
|
|
memcpy(pDecodedCodeword,py,nN*sizeof(int)); // no puncturing
|
|
}
|
|
|
|
#ifdef Q65_CHECKLLH
|
|
if (q65_check_llh(NULL,pDecodedCodeword, nN, nM, pIntrinsics)==0) // llh less than threshold
|
|
return Q65_DECODE_LLHLOW;
|
|
#endif
|
|
|
|
return rc; // return the number of iterations required to decode
|
|
|
|
}
|
|
|
|
|
|
// Compute and verify the loglikelihood of the decoded codeword
|
|
int q65_check_llh(float *llh, const int* ydec, const int nN, const int nM, const float *pIntrin)
|
|
{
|
|
int k;
|
|
float t = 0;
|
|
|
|
for (k=0;k<nN;k++) {
|
|
t+=logf(pIntrin[ydec[k]]);
|
|
pIntrin+=nM;
|
|
}
|
|
|
|
if (llh!=NULL)
|
|
*llh = t;
|
|
|
|
return (t>=Q65_LLH_THRESHOLD);
|
|
}
|
|
|
|
// Full AP decoding from a list of codewords
|
|
int q65_decode_fullaplist(q65_codec_ds *codec,
|
|
int *ydec,
|
|
int *xdec,
|
|
const float *pIntrinsics,
|
|
const int *pCodewords,
|
|
const int nCodewords)
|
|
{
|
|
int k;
|
|
int nK, nN, nM;
|
|
|
|
float llh;
|
|
float maxllh = Q65_LLH_THRESHOLD-1; // set to a value less than the threshold
|
|
int maxcw = -1; // index of the most likely codeword
|
|
const int *pCw;
|
|
|
|
if (nCodewords<1 || nCodewords>Q65_FULLAPLIST_SIZE)
|
|
return Q65_DECODE_INVPARAMS; // invalid list length
|
|
|
|
nK = q65_get_message_length(codec);
|
|
nN = q65_get_codeword_length(codec);
|
|
nM = q65_get_alphabet_size(codec);
|
|
|
|
// compute codewords log likelihoods and find max
|
|
pCw = pCodewords; // start from the first codeword
|
|
for (k=0;k<nCodewords;k++) {
|
|
// compute and check this codeword loglikelihood
|
|
if (q65_check_llh(&llh,pCw, nN, nM, pIntrinsics)==1) // larger than threshold
|
|
// select the codeword with max logll
|
|
if (llh>maxllh) {
|
|
maxllh = llh;
|
|
maxcw = k;
|
|
}
|
|
// printf("BBB %d %f\n",k,llh);
|
|
// point to next codeword
|
|
pCw+=nN;
|
|
}
|
|
q65_llh=maxllh;
|
|
if (maxcw<0) // no llh larger than threshold found
|
|
return Q65_DECODE_FAILED;
|
|
|
|
pCw = pCodewords+nN*maxcw;
|
|
memcpy(ydec,pCw,nN*sizeof(int));
|
|
memcpy(xdec,pCw,nK*sizeof(int));
|
|
|
|
return maxcw; // index to the decoded message (>=0)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// helper functions -------------------------------------------------------------
|
|
|
|
int _q65_get_message_length(const qracode *pCode)
|
|
{
|
|
// return the actual information message length (in symbols)
|
|
// excluding any punctured symbol
|
|
|
|
int nMsgLength;
|
|
|
|
switch (pCode->type) {
|
|
case QRATYPE_NORMAL:
|
|
nMsgLength = pCode->K;
|
|
break;
|
|
case QRATYPE_CRC:
|
|
case QRATYPE_CRCPUNCTURED:
|
|
// one information symbol of the underlying qra code is reserved for CRC
|
|
nMsgLength = pCode->K-1;
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
// two code information symbols are reserved for CRC
|
|
nMsgLength = pCode->K-2;
|
|
break;
|
|
default:
|
|
nMsgLength = -1;
|
|
}
|
|
|
|
return nMsgLength;
|
|
}
|
|
|
|
int _q65_get_codeword_length(const qracode *pCode)
|
|
{
|
|
// return the actual codeword length (in symbols)
|
|
// excluding any punctured symbol
|
|
|
|
int nCwLength;
|
|
|
|
switch (pCode->type) {
|
|
case QRATYPE_NORMAL:
|
|
case QRATYPE_CRC:
|
|
// no puncturing
|
|
nCwLength = pCode->N;
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED:
|
|
// the CRC symbol is punctured
|
|
nCwLength = pCode->N-1;
|
|
break;
|
|
case QRATYPE_CRCPUNCTURED2:
|
|
// the two CRC symbols are punctured
|
|
nCwLength = pCode->N-2;
|
|
break;
|
|
default:
|
|
nCwLength = -1;
|
|
}
|
|
|
|
return nCwLength;
|
|
}
|
|
|
|
float _q65_get_code_rate(const qracode *pCode)
|
|
{
|
|
return 1.0f*_q65_get_message_length(pCode)/_q65_get_codeword_length(pCode);
|
|
}
|
|
|
|
int _q65_get_alphabet_size(const qracode *pCode)
|
|
{
|
|
return pCode->M;
|
|
}
|
|
int _q65_get_bits_per_symbol(const qracode *pCode)
|
|
{
|
|
return pCode->m;
|
|
}
|
|
static void _q65_mask(const qracode *pcode, float *ix, const int *mask, const int *x)
|
|
{
|
|
// mask intrinsic information ix with available a priori knowledge
|
|
|
|
int k,kk, smask;
|
|
const int nM=pcode->M;
|
|
const int nm=pcode->m;
|
|
int nK;
|
|
|
|
// Exclude from masking the symbols which have been punctured.
|
|
// nK is the length of the mask and x arrays, which do
|
|
// not include any punctured symbol
|
|
nK = _q65_get_message_length(pcode);
|
|
|
|
// for each symbol set to zero the probability
|
|
// of the values which are not allowed by
|
|
// the a priori information
|
|
|
|
for (k=0;k<nK;k++) {
|
|
smask = mask[k];
|
|
if (smask) {
|
|
for (kk=0;kk<nM;kk++)
|
|
if (((kk^x[k])&smask)!=0)
|
|
// This symbol value is not allowed
|
|
// by the AP information
|
|
// Set its probability to zero
|
|
*(PD_ROWADDR(ix,nM,k)+kk) = 0.f;
|
|
|
|
// normalize to a probability distribution
|
|
pd_norm(PD_ROWADDR(ix,nM,k),nm);
|
|
}
|
|
}
|
|
}
|
|
|
|
// CRC generation functions
|
|
|
|
// crc-6 generator polynomial
|
|
// g(x) = x^6 + x + 1
|
|
#define CRC6_GEN_POL 0x30 // MSB=a0 LSB=a5
|
|
|
|
// crc-12 generator polynomial
|
|
// g(x) = x^12 + x^11 + x^3 + x^2 + x + 1
|
|
#define CRC12_GEN_POL 0xF01 // MSB=a0 LSB=a11
|
|
|
|
// g(x) = x^6 + x^2 + x + 1 (as suggested by Joe. See i.e.: https://users.ece.cmu.edu/~koopman/crc/)
|
|
// #define CRC6_GEN_POL 0x38 // MSB=a0 LSB=a5. Simulation results are similar
|
|
|
|
|
|
static int _q65_crc6(int *x, int sz)
|
|
{
|
|
int k,j,t,sr = 0;
|
|
for (k=0;k<sz;k++) {
|
|
t = x[k];
|
|
for (j=0;j<6;j++) {
|
|
if ((t^sr)&0x01)
|
|
sr = (sr>>1) ^ CRC6_GEN_POL;
|
|
else
|
|
sr = (sr>>1);
|
|
t>>=1;
|
|
}
|
|
}
|
|
|
|
return sr;
|
|
}
|
|
|
|
static void _q65_crc12(int *y, int *x, int sz)
|
|
{
|
|
int k,j,t,sr = 0;
|
|
for (k=0;k<sz;k++) {
|
|
t = x[k];
|
|
for (j=0;j<6;j++) {
|
|
if ((t^sr)&0x01)
|
|
sr = (sr>>1) ^ CRC12_GEN_POL;
|
|
else
|
|
sr = (sr>>1);
|
|
t>>=1;
|
|
}
|
|
}
|
|
|
|
y[0] = sr&0x3F;
|
|
y[1] = (sr>>6);
|
|
}
|
|
|
|
|