WSJT-X/lib/sfrsd2/sfrsd2.c
Steven Franke 7697fbe072 Fix defect in sfrsd2 acceptance criteria.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6226 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-06 01:57:05 +00:00

275 lines
8.4 KiB
C

/*
sfrsd2.c
A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
This decoding scheme is built around Phil Karn's Berlekamp-Massey
errors and erasures decoder. The approach is inspired by a number of
publications, including the stochastic Chase decoder described
in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
"Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
Steve Franke K9AN and Joe Taylor K1JT
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include "rs2.h"
static void *rs;
void sfrsd2_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[],
int* ntrials0, int* verbose0, int correct[], int param[],
int indexes[], double tt[], int ntry[])
{
int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
int workdat[63];
int era_pos[51];
int i, j, numera, nerr, nn=63;
FILE *logfile = NULL;
int ntrials = *ntrials0;
int verbose = *verbose0;
int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768;
int nsofter=0,nsofter_min=32768,ntotal=0,ntotal_min=32768,ncandidates;
int nera_best=0;
clock_t t0=0,t1=0;
static unsigned int nseed;
/* For JT exp(x) symbol metrics - gaussian noise, no fading
int perr[8][8] = {
{12, 31, 44, 52, 60, 57, 50, 50},
{28, 38, 49, 58, 65, 69, 64, 80},
{40, 41, 53, 62, 66, 73, 76, 81},
{50, 53, 53, 64, 70, 76, 77, 81},
{50, 50, 52, 60, 71, 72, 77, 84},
{50, 50, 56, 62, 67, 73, 81, 85},
{50, 50, 71, 62, 70, 77, 80, 85},
{50, 50, 62, 64, 71, 75, 82, 87}};
*/
/* For JT exp(x) symbol metrics - hf conditions
int perr[8][8] = {
{10, 10, 10, 12, 13, 15, 15, 9},
{28, 30, 43, 50, 61, 58, 50, 34},
{40, 40, 50, 53, 70, 65, 58, 45},
{50, 50, 53, 74, 71, 68, 66, 52},
{50, 50, 52, 45, 67, 70, 70, 60},
{50, 50, 56, 73, 55, 74, 69, 67},
{50, 50, 70, 81, 81, 69, 76, 75},
{50, 50, 62, 57, 77, 81, 73, 78}};
*/
// For SF power-percentage symbol metrics - composite gnnf/hf
int perr[8][8] = {
{4, 9, 11, 13, 14, 14, 15, 15},
{2, 20, 20, 30, 40, 50, 50, 50},
{7, 24, 27, 40, 50, 50, 50, 50},
{13, 25, 35, 46, 52, 70, 50, 50},
{17, 30, 42, 54, 55, 64, 71, 70},
{25, 39, 48, 57, 64, 66, 77, 77},
{32, 45, 54, 63, 66, 75, 78, 83},
{51, 58, 57, 66, 72, 77, 82, 86}};
//
/* For SF power-percentage symbol metrics - gaussian noise, no fading
int perr[8][8] = {
{1, 10, 10, 20, 30, 50, 50, 50},
{2, 20, 20, 30, 40, 50, 50, 50},
{7, 24, 27, 40, 50, 50, 50, 50},
{13, 25, 35, 46, 52, 70, 50, 50},
{17, 30, 42, 54, 55, 64, 71, 70},
{25, 39, 48, 57, 64, 66, 77, 77},
{32, 45, 54, 63, 66, 75, 78, 83},
{51, 58, 57, 66, 72, 77, 82, 86}};
*/
/* For SF power-percentage symbol metrics - hf
int perr[8][8] = {
{4, 9, 11, 13, 14, 14, 15, 15},
{9, 12, 14, 25, 28, 30, 50, 50},
{18, 22, 22, 28, 32, 35, 50, 50},
{30, 35, 38, 38, 57, 50, 50, 50},
{43, 46, 45, 53, 50, 64, 70, 50},
{56, 58, 58, 57, 67, 66, 80, 77},
{65, 72, 73, 72, 67, 75, 80, 83},
{70, 74, 73, 70, 75, 77, 80, 86}};
*/
if(verbose) {
logfile=fopen("/tmp/sfrsd.log","a");
if( !logfile ) {
printf("Unable to open sfrsd.log\n");
exit(1);
}
}
// Initialize the KA9Q Reed-Solomon encoder/decoder
unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
// Reverse the received symbol vector for BM decoder
for (i=0; i<63; i++) {
rxdat[i]=mrsym[62-i];
rxprob[i]=mrprob[62-i];
rxdat2[i]=mr2sym[62-i];
rxprob2[i]=mr2prob[62-i];
}
// Sort the mrsym probabilities to find the least reliable symbols
int k, pass, tmp, nsym=63;
int probs[63];
for (i=0; i<63; i++) {
indexes[i]=i;
probs[i]=rxprob[i];
}
for (pass = 1; pass <= nsym-1; pass++) {
for (k = 0; k < nsym - pass; k++) {
if( probs[k] < probs[k+1] ) {
tmp = probs[k];
probs[k] = probs[k+1];
probs[k+1] = tmp;
tmp = indexes[k];
indexes[k] = indexes[k+1];
indexes[k+1] = tmp;
}
}
}
// See if we can decode using BM HDD, and calculate the syndrome vector.
memset(era_pos,0,51*sizeof(int));
numera=0;
memcpy(workdat,rxdat,sizeof(rxdat));
nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
if( nerr >= 0 ) {
nhard=0;
for (i=0; i<63; i++) {
if( workdat[i] != rxdat[i] ) nhard=nhard+1;
}
if(logfile) {
fprintf(logfile,"BM decode nerrors= %3d : \n",nerr);
fclose(logfile);
}
memcpy(correct,workdat,63*sizeof(int));
param[0]=0;
param[1]=nhard;
param[2]=0;
param[3]=0;
param[4]=0;
ntry[0]=0;
return;
}
/*
Generate random erasure-locator vectors and see if any of them
decode. This will generate a list of potential codewords. The
"soft" distance between each codeword and the received word is
used to decide which codeword is "best".
*/
nseed=1; //Seed for random numbers
float ratio;
int thresh, nsum;
int thresh0[63];
ncandidates=0;
nsum=0;
int ii,jj;
for (i=0; i<nn; i++) {
nsum=nsum+rxprob[i];
j = indexes[62-i];
ratio = (float)rxprob2[j]/((float)rxprob[j]+0.01);
ii = 7.999*ratio;
jj = (62-i)/8;
thresh0[i] = 1.3*perr[ii][jj];
}
if(nsum==0) return;
for (k=1; k<=ntrials; k++) {
memset(era_pos,0,51*sizeof(int));
memcpy(workdat,rxdat,sizeof(rxdat));
/*
Mark a subset of the symbols as erasures.
Run through the ranked symbols, starting with the worst, i=0.
NB: j is the symbol-vector index of the symbol with rank i.
*/
numera=0;
for (i=0; i<nn; i++) {
j = indexes[62-i];
thresh=thresh0[i];
long int ir;
// Generate a random number ir, 0 <= ir < 100 (see POSIX.1-2001 example).
nseed = nseed * 1103515245 + 12345;
ir = (unsigned)(nseed/65536) % 32768;
ir = (100*ir)/32768;
if((ir < thresh ) && numera < 51) {
era_pos[numera]=j;
numera=numera+1;
}
}
t0=clock();
nerr=decode_rs_int(rs,workdat,era_pos,numera,0);
t1=clock();
tt[0]+=(double)(t1-t0)/CLOCKS_PER_SEC;
if( nerr >= 0 ) {
ncandidates=ncandidates+1;
nhard=0;
nsoft=0;
nsofter=0;
for (i=0; i<63; i++) {
if(workdat[i] != rxdat[i]) {
nhard=nhard+1;
nsofter=nsofter+rxprob[i];
if(workdat[i] != rxdat2[i]) {
nsoft=nsoft+rxprob[i];
}
} else {
nsofter=nsofter-rxprob[i];
}
}
nsoft=63*nsoft/nsum;
nsofter=63*nsofter/nsum;
ntotal=nsoft+nhard;
if( ntotal<ntotal_min ) {
nsoft_min=nsoft;
nhard_min=nhard;
nsofter_min=nsofter;
ntotal_min=ntotal;
memcpy(correct,workdat,63*sizeof(int));
nera_best=numera;
ntry[0]=k;
}
// if(ntotal_min<72 && nhard_min<42) break;
if(ntotal_min<76 && nhard_min<44) break;
}
if(k == ntrials) ntry[0]=k;
}
if( ntotal_min>=76 || nhard_min>=44 ) {
nhard_min=-1;
}
if(logfile) {
fprintf(logfile,"ncand %4d nhard %4d nsoft %4d nhard+nsoft %4d nsum %8d\n",
ncandidates,nhard_min,nsoft_min,ntotal_min,nsum);
fclose(logfile);
}
param[0]=ncandidates;
param[1]=nhard_min;
param[2]=nsoft_min;
param[3]=nera_best;
param[4]=nsofter_min;
if(param[0]==0) param[2]=-1;
return;
}