WSJT-X/Modulator.cpp
Steve Franke a9623703b3 FT4: Change Fortran code to NSPS=576 and make necessary accompanying
changes on the C++ side. Basically works except that Tx audio has
incorrect DT and audio is truncated at the end. Also, command line
decoding using JT9 is not as sensitive as decoding from within WSJT-X.
2019-05-22 17:02:15 -05:00

358 lines
11 KiB
C++

#include "Modulator.hpp"
#include <limits>
#include <qmath.h>
#include <QDateTime>
#include <QDebug>
#include "widgets/mainwindow.h" // TODO: G4WJS - break this dependency
#include "soundout.h"
#include "commons.h"
#include "moc_Modulator.cpp"
extern float gran(); // Noise generator (for tests only)
#define RAMP_INCREMENT 64 // MUST be an integral factor of 2^16
#if defined (WSJT_SOFT_KEYING)
# define SOFT_KEYING WSJT_SOFT_KEYING
#else
# define SOFT_KEYING 1
#endif
double constexpr Modulator::m_twoPi;
// float wpm=20.0;
// unsigned m_nspd=1.2*48000.0/wpm;
// m_nspd=3072; //18.75 WPM
Modulator::Modulator (unsigned frameRate, double periodLengthInSeconds,
QObject * parent)
: AudioDevice {parent}
, m_quickClose {false}
, m_phi {0.0}
, m_toneSpacing {0.0}
, m_fSpread {0.0}
, m_frameRate {frameRate}
, m_period {periodLengthInSeconds}
, m_state {Idle}
, m_tuning {false}
, m_cwLevel {false}
, m_j0 {-1}
, m_toneFrequency0 {1500.0}
{
}
void Modulator::start (unsigned symbolsLength, double framesPerSymbol,
double frequency, double toneSpacing,
SoundOutput * stream, Channel channel,
bool synchronize, bool fastMode, double dBSNR, double TRperiod)
{
Q_ASSERT (stream);
// Time according to this computer which becomes our base time
qint64 ms0 = QDateTime::currentMSecsSinceEpoch() % 86400000;
// qDebug() << "ModStart" << QDateTime::currentDateTimeUtc().toString("hh:mm:ss.sss");
if(m_state != Idle) stop ();
m_quickClose = false;
m_symbolsLength = symbolsLength;
m_isym0 = std::numeric_limits<unsigned>::max (); // big number
m_frequency0 = 0.;
m_phi = 0.;
m_addNoise = dBSNR < 0.;
m_nsps = framesPerSymbol;
m_frequency = frequency;
m_amp = std::numeric_limits<qint16>::max ();
m_toneSpacing = toneSpacing;
m_bFastMode=fastMode;
m_TRperiod=TRperiod;
unsigned delay_ms = 1920 == m_nsps && 15 == m_period ? 500 : 1000;
// noise generator parameters
if (m_addNoise) {
m_snr = qPow (10.0, 0.05 * (dBSNR - 6.0));
m_fac = 3000.0;
if (m_snr > 1.0) m_fac = 3000.0 / m_snr;
}
unsigned mstr = ms0 % int(1000.0*m_period); // ms in period
// round up to an exact portion of a second that allows for startup
// delays
m_ic = (mstr / delay_ms) * m_frameRate * delay_ms / 1000;
if(m_bFastMode) m_ic=0;
m_silentFrames = 0;
// calculate number of silent frames to send, so that audio will start at
// the nominal time "delay_ms" into the Tx sequence.
if (synchronize && !m_tuning && !m_bFastMode) {
m_silentFrames = m_ic + m_frameRate / (1000 / delay_ms) - (mstr * (m_frameRate / 1000));
}
if(symbolsLength==105 and framesPerSymbol==576
and (toneSpacing==12000.0/576.0 or toneSpacing==-2.0)) {
//### FT4 parameters
m_ic=0;
m_silentFrames=0;
}
// qDebug() << "Mod AA" << symbolsLength << framesPerSymbol << toneSpacing;
// qDebug() << "Mod AB" << delay_ms << mstr << m_ic << m_silentFrames;
initialize (QIODevice::ReadOnly, channel);
Q_EMIT stateChanged ((m_state = (synchronize && m_silentFrames) ?
Synchronizing : Active));
m_stream = stream;
if (m_stream) m_stream->restart (this);
}
void Modulator::tune (bool newState)
{
m_tuning = newState;
if (!m_tuning) stop (true);
}
void Modulator::stop (bool quick)
{
m_quickClose = quick;
close ();
}
void Modulator::close ()
{
if (m_stream)
{
if (m_quickClose)
{
m_stream->reset ();
}
else
{
m_stream->stop ();
}
}
if (m_state != Idle)
{
Q_EMIT stateChanged ((m_state = Idle));
}
AudioDevice::close ();
}
qint64 Modulator::readData (char * data, qint64 maxSize)
{
double toneFrequency=1500.0;
if(m_nsps==6) {
toneFrequency=1000.0;
m_frequency=1000.0;
m_frequency0=1000.0;
}
if(maxSize==0) return 0;
Q_ASSERT (!(maxSize % qint64 (bytesPerFrame ()))); // no torn frames
Q_ASSERT (isOpen ());
qint64 numFrames (maxSize / bytesPerFrame ());
qint16 * samples (reinterpret_cast<qint16 *> (data));
qint16 * end (samples + numFrames * (bytesPerFrame () / sizeof (qint16)));
qint64 framesGenerated (0);
// if(m_ic==0) qDebug() << "Modulator::readData" << 0.001*(QDateTime::currentMSecsSinceEpoch() % (1000*m_TRperiod));
switch (m_state)
{
case Synchronizing:
{
if (m_silentFrames) { // send silence up to first second
framesGenerated = qMin (m_silentFrames, numFrames);
for ( ; samples != end; samples = load (0, samples)) { // silence
}
m_silentFrames -= framesGenerated;
return framesGenerated * bytesPerFrame ();
}
Q_EMIT stateChanged ((m_state = Active));
m_cwLevel = false;
m_ramp = 0; // prepare for CW wave shaping
}
// fall through
case Active:
{
unsigned int isym=0;
if(!m_tuning) isym=m_ic/(4.0*m_nsps); // Actual fsample=48000
bool slowCwId=((isym >= m_symbolsLength) && (icw[0] > 0)) && (!m_bFastMode);
if(m_TRperiod==3.0) slowCwId=false;
bool fastCwId=false;
static bool bCwId=false;
qint64 ms = QDateTime::currentMSecsSinceEpoch();
float tsec=0.001*(ms % int(1000*m_TRperiod));
if(m_bFastMode and (icw[0]>0) and (tsec > (m_TRperiod-5.0))) fastCwId=true;
if(!m_bFastMode) m_nspd=2560; // 22.5 WPM
// qDebug() << "Mod A" << m_ic << isym << tsec;
if(slowCwId or fastCwId) { // Transmit CW ID?
m_dphi = m_twoPi*m_frequency/m_frameRate;
if(m_bFastMode and !bCwId) {
m_frequency=1500; // Set params for CW ID
m_dphi = m_twoPi*m_frequency/m_frameRate;
m_symbolsLength=126;
m_nsps=4096.0*12000.0/11025.0;
m_ic=2246949;
m_nspd=2560; // 22.5 WPM
if(icw[0]*m_nspd/48000.0 > 4.0) m_nspd=4.0*48000.0/icw[0]; //Faster CW for long calls
}
bCwId=true;
unsigned ic0 = m_symbolsLength * 4 * m_nsps;
unsigned j(0);
while (samples != end) {
j = (m_ic - ic0)/m_nspd + 1; // symbol of this sample
bool level {bool (icw[j])};
m_phi += m_dphi;
if (m_phi > m_twoPi) m_phi -= m_twoPi;
qint16 sample=0;
float amp=32767.0;
float x=0;
if(m_ramp!=0) {
x=qSin(float(m_phi));
if(SOFT_KEYING) {
amp=qAbs(qint32(m_ramp));
if(amp>32767.0) amp=32767.0;
}
sample=round(amp*x);
}
if(m_bFastMode) {
sample=0;
if(level) sample=32767.0*x;
}
if (int (j) <= icw[0] && j < NUM_CW_SYMBOLS) { // stop condition
samples = load (postProcessSample (sample), samples);
++framesGenerated;
++m_ic;
} else {
Q_EMIT stateChanged ((m_state = Idle));
return framesGenerated * bytesPerFrame ();
}
// adjust ramp
if ((m_ramp != 0 && m_ramp != std::numeric_limits<qint16>::min ()) || level != m_cwLevel) {
// either ramp has terminated at max/min or direction has changed
m_ramp += RAMP_INCREMENT; // ramp
}
m_cwLevel = level;
}
return framesGenerated * bytesPerFrame ();
} else {
bCwId=false;
} //End of code for CW ID
double const baud (12000.0 / m_nsps);
// fade out parameters (no fade out for tuning)
unsigned int i0,i1;
if(m_tuning) {
i1 = i0 = (m_bFastMode ? 999999 : 9999) * m_nsps;
} else {
i0=(m_symbolsLength - 0.017) * 4.0 * m_nsps;
i1= m_symbolsLength * 4.0 * m_nsps;
}
if(m_bFastMode and !m_tuning) {
i1=m_TRperiod*48000.0 - 24000.0;
i0=i1-816;
}
qint16 sample;
for (unsigned i = 0; i < numFrames && m_ic <= i1; ++i) {
isym=0;
if(!m_tuning and m_TRperiod!=3.0) isym=m_ic/(4.0*m_nsps); //Actual fsample=48000
if(m_bFastMode) isym=isym%m_symbolsLength;
if (isym != m_isym0 || m_frequency != m_frequency0) {
if(itone[0]>=100) {
m_toneFrequency0=itone[0];
} else {
if(m_toneSpacing==0.0) {
m_toneFrequency0=m_frequency + itone[isym]*baud;
} else {
m_toneFrequency0=m_frequency + itone[isym]*m_toneSpacing;
}
}
m_dphi = m_twoPi * m_toneFrequency0 / m_frameRate;
m_isym0 = isym;
m_frequency0 = m_frequency; //???
}
int j=m_ic/480;
if(m_fSpread>0.0 and j!=m_j0) {
float x1=(float)qrand()/RAND_MAX;
float x2=(float)qrand()/RAND_MAX;
toneFrequency = m_toneFrequency0 + 0.5*m_fSpread*(x1+x2-1.0);
m_dphi = m_twoPi * toneFrequency / m_frameRate;
m_j0=j;
}
m_phi += m_dphi;
if (m_phi > m_twoPi) m_phi -= m_twoPi;
if (m_ic > i0) m_amp = 0.98 * m_amp;
if (m_ic > i1) m_amp = 0.0;
sample=qRound(m_amp*qSin(m_phi));
//Here's where we transmit from a precomputed wave[] array:
if(!m_tuning and (m_toneSpacing < 0)) {
m_amp=32767.0;
sample=qRound(m_amp*foxcom_.wave[m_ic]);
}
samples = load(postProcessSample(sample), samples);
++framesGenerated;
++m_ic;
}
if (m_amp == 0.0) { // TODO G4WJS: compare double with zero might not be wise
if (icw[0] == 0) {
// no CW ID to send
Q_EMIT stateChanged ((m_state = Idle));
return framesGenerated * bytesPerFrame ();
}
m_phi = 0.0;
}
m_frequency0 = m_frequency;
// done for this chunk - continue on next call
// qDebug() << "Mod B" << m_ic << i1 << 0.001*(QDateTime::currentMSecsSinceEpoch() % (1000*m_TRperiod));
while (samples != end) // pad block with silence
{
samples = load (0, samples);
++framesGenerated;
}
return framesGenerated * bytesPerFrame ();
}
// fall through
case Idle:
break;
}
Q_ASSERT (Idle == m_state);
return 0;
}
qint16 Modulator::postProcessSample (qint16 sample) const
{
if (m_addNoise) { // Test frame, we'll add noise
qint32 s = m_fac * (gran () + sample * m_snr / 32768.0);
if (s > std::numeric_limits<qint16>::max ()) {
s = std::numeric_limits<qint16>::max ();
}
if (s < std::numeric_limits<qint16>::min ()) {
s = std::numeric_limits<qint16>::min ();
}
sample = s;
}
return sample;
}