mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-08 18:16:02 -05:00
f3703e0241
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6926 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
475 lines
16 KiB
C
475 lines
16 KiB
C
// qracodes.c
|
|
// Q-ary RA codes encoding/decoding functions
|
|
//
|
|
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
|
|
// ------------------------------------------------------------------------------
|
|
// This file is part of the qracodes project, a Forward Error Control
|
|
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
|
|
//
|
|
// qracodes is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
// qracodes is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with qracodes source distribution.
|
|
// If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "npfwht.h"
|
|
#include "pdmath.h"
|
|
|
|
#include "qracodes.h"
|
|
|
|
int qra_encode(const qracode *pcode, int *y, const int *x)
|
|
{
|
|
int k,j,kk,jj;
|
|
int t, chk = 0;
|
|
|
|
const int K = pcode->K;
|
|
const int M = pcode->M;
|
|
const int NC= pcode->NC;
|
|
const int a = pcode->a;
|
|
const int *acc_input_idx = pcode->acc_input_idx;
|
|
const int *acc_input_wlog = pcode->acc_input_wlog;
|
|
const int *gflog = pcode->gflog;
|
|
const int *gfexp = pcode->gfexp;
|
|
|
|
// copy the systematic symbols to destination
|
|
memcpy(y,x,K*sizeof(int));
|
|
|
|
y = y+K; // point to check symbols
|
|
|
|
// compute the code check symbols as a weighted accumulation of a permutated
|
|
// sequence of the (repeated) systematic input symbols:
|
|
// chk(k+1) = x(idx(k))*alfa^(logw(k)) + chk(k)
|
|
// (all operations performed over GF(M))
|
|
|
|
if (a==1) { // grouping factor = 1
|
|
for (k=0;k<NC;k++) {
|
|
t = x[acc_input_idx[k]];
|
|
if (t) {
|
|
// multiply input by weight[k] and xor it with previous check
|
|
t = (gflog[t] + acc_input_wlog[k])%(M-1);
|
|
t = gfexp[t];
|
|
chk ^=t;
|
|
}
|
|
y[k] = chk;
|
|
}
|
|
|
|
#ifdef QRA_DEBUG
|
|
// verify that the encoder accumulator is terminated to 0
|
|
// (we designed the code this way so that Iex = 1 when Ia = 1)
|
|
t = x[acc_input_idx[k]];
|
|
if (t) {
|
|
t = (gflog[t] + acc_input_wlog[k])%(M-1);
|
|
t = gfexp[t];
|
|
// accumulation
|
|
chk ^=t;
|
|
}
|
|
return (chk==0);
|
|
#else
|
|
return 1;
|
|
#endif // QRA_DEBUG
|
|
}
|
|
else { // grouping factor > 1
|
|
for (k=0;k<NC;k++) {
|
|
kk = a*k;
|
|
for (j=0;j<a;j++) {
|
|
jj = kk+j;
|
|
// irregular grouping support
|
|
if (acc_input_idx[jj]<0)
|
|
continue;
|
|
t = x[acc_input_idx[jj]];
|
|
if (t) {
|
|
// multiply input by weight[k] and xor it with previous check
|
|
t = (gflog[t] + acc_input_wlog[jj])%(M-1);
|
|
t = gfexp[t];
|
|
chk ^=t;
|
|
}
|
|
}
|
|
y[k] = chk;
|
|
}
|
|
#ifdef QRA_DEBUG
|
|
// verify that the encoder accumulator is terminated to 0
|
|
// (we designed the code this way so that Iex = 1 when Ia = 1)
|
|
kk = a*k;
|
|
for (j=0;j<a;j++) {
|
|
jj = kk+j;
|
|
if (acc_input_idx[jj]<0)
|
|
continue;
|
|
t = x[acc_input_idx[jj]];
|
|
if (t) {
|
|
// multiply input by weight[k] and xor it with previous check
|
|
t = (gflog[t] + acc_input_wlog[jj])%(M-1);
|
|
t = gfexp[t];
|
|
chk ^=t;
|
|
}
|
|
}
|
|
return (chk==0);
|
|
#else
|
|
return 1;
|
|
#endif // QRA_DEBUG
|
|
}
|
|
}
|
|
|
|
static void qra_ioapprox(float *src, float C, int nitems)
|
|
{
|
|
// In place approximation of the modified bessel function I0(x*C)
|
|
// Computes src[k] = Io(src[k]*C) where Io() is the modified Bessel function of first kind and order 0
|
|
|
|
float v;
|
|
float vsq;
|
|
|
|
while (nitems--) {
|
|
v = src[nitems]*C;
|
|
|
|
// rational approximation of log(Io(v))
|
|
vsq = v*v;
|
|
v = vsq*(v+0.039f)/(vsq*.9931f+v*2.6936f+0.5185f);
|
|
|
|
if (v>80.f) // avoid floating point exp() overflows
|
|
v=80.f;
|
|
|
|
src[nitems] = (float)exp(v);
|
|
}
|
|
}
|
|
|
|
|
|
float qra_mfskbesselmetric(float *pix, const float *rsq, const int m, const int N, float EsNoMetric)
|
|
{
|
|
// Computes the codeword symbols intrinsic probabilities
|
|
// given the square of the received input amplitudes.
|
|
|
|
// The input vector rqs must be a linear array of size M*N, where M=2^m,
|
|
// containing the squared amplitudes (rp*rp+rq*rq) of the input samples
|
|
|
|
// First symbol amplitudes should be stored in the first M positions,
|
|
// second symbol amplitudes stored at positions [M ... 2*M-1], and so on.
|
|
|
|
// Output vector is the intrinsic symbol metric (the probability distribution)
|
|
// assuming that symbols are transmitted using a M-FSK modulation
|
|
// and incoherent demodulation.
|
|
|
|
// As the input Es/No is generally unknown (as it cannot be exstimated accurately
|
|
// when the codeword length is few tens symbols) but an exact metric requires it
|
|
// we simply fix it to a predefined EsNoMetric value so that the metric is what
|
|
// expected at that specific value.
|
|
// The metric computed in this way is optimal only at this predefined Es/No value,
|
|
// nevertheless it is usually better than a generic parameter-free metric which
|
|
// makes no assumptions on the input Es/No.
|
|
|
|
// returns the estimated noise standard deviation
|
|
|
|
int k;
|
|
float rsum = 0.f;
|
|
float sigmaest, cmetric;
|
|
|
|
const int M = 1<<m;
|
|
const int nsamples = M*N;
|
|
|
|
// compute total power and modulus of input signal
|
|
for (k=0;k<nsamples;k++) {
|
|
rsum = rsum+rsq[k];
|
|
pix[k] = (float)sqrt(rsq[k]);
|
|
}
|
|
|
|
rsum = rsum/nsamples; // average S+N
|
|
|
|
// IMPORTANT NOTE: in computing the noise stdev it is assumed that
|
|
// in the input amplitudes there's no strong interference!
|
|
// A more robust estimation can be done evaluating the histogram of the input amplitudes
|
|
|
|
sigmaest = (float)sqrt(rsum/(1.0f+EsNoMetric/M)/2); // estimated noise stdev
|
|
cmetric = (float)sqrt(2*EsNoMetric)/sigmaest;
|
|
|
|
for (k=0;k<N;k++) {
|
|
// compute bessel metric for each symbol in the codeword
|
|
qra_ioapprox(PD_ROWADDR(pix,M,k),cmetric,M);
|
|
// normalize to a probability distribution
|
|
pd_norm(PD_ROWADDR(pix,M,k),m);
|
|
}
|
|
|
|
return sigmaest;
|
|
}
|
|
|
|
|
|
#ifdef QRA_DEBUG
|
|
void pd_print(int imsg,float *ppd,int size)
|
|
{
|
|
int k;
|
|
printf("imsg=%d\n",imsg);
|
|
for (k=0;k<size;k++)
|
|
printf("%7.1e ",ppd[k]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
|
|
#define ADDRMSG(fp, msgidx) PD_ROWADDR(fp,qra_M,msgidx)
|
|
#define C2VMSG(msgidx) PD_ROWADDR(qra_c2vmsg,qra_M,msgidx)
|
|
#define V2CMSG(msgidx) PD_ROWADDR(qra_v2cmsg,qra_M,msgidx)
|
|
#define MSGPERM(logw) PD_ROWADDR(qra_pmat,qra_M,logw)
|
|
|
|
#define QRACODE_MAX_M 256 // Maximum alphabet size handled by qra_extrinsic
|
|
|
|
int qra_extrinsic(const qracode *pcode,
|
|
float *pex,
|
|
const float *pix,
|
|
int maxiter,
|
|
float *qra_v2cmsg,
|
|
float *qra_c2vmsg)
|
|
{
|
|
const int qra_M = pcode->M;
|
|
const int qra_m = pcode->m;
|
|
const int qra_V = pcode->V;
|
|
const int qra_MAXVDEG = pcode->MAXVDEG;
|
|
const int *qra_vdeg = pcode->vdeg;
|
|
const int qra_C = pcode->C;
|
|
const int qra_MAXCDEG = pcode->MAXCDEG;
|
|
const int *qra_cdeg = pcode->cdeg;
|
|
const int *qra_v2cmidx = pcode->v2cmidx;
|
|
const int *qra_c2vmidx = pcode->c2vmidx;
|
|
const int *qra_pmat = pcode->gfpmat;
|
|
const int *qra_msgw = pcode->msgw;
|
|
|
|
// float msgout[qra_M]; // buffer to store temporary results
|
|
float msgout[QRACODE_MAX_M]; // we use a fixed size in order to avoid mallocs
|
|
|
|
float totex; // total extrinsic information
|
|
int nit; // current iteration
|
|
int nv; // current variable
|
|
int nc; // current check
|
|
int k,kk; // loop indexes
|
|
|
|
int ndeg; // current node degree
|
|
int msgbase; // current offset in the table of msg indexes
|
|
int imsg; // current message index
|
|
int wmsg; // current message weight
|
|
|
|
int rc = -1; // rc>=0 extrinsic converged to 1 at iteration rc (rc=0..maxiter-1)
|
|
// rc=-1 no convergence in the given number of iterations
|
|
// rc=-2 error in the code tables (code checks degrees must be >1)
|
|
// rc=-3 M is larger than QRACODE_MAX_M
|
|
|
|
|
|
|
|
if (qra_M>QRACODE_MAX_M)
|
|
return -3;
|
|
|
|
// message initialization -------------------------------------------------------
|
|
|
|
// init c->v variable intrinsic msgs
|
|
pd_init(C2VMSG(0),pix,qra_M*qra_V);
|
|
|
|
// init the v->c messages directed to code factors (k=1..ndeg) with the intrinsic info
|
|
for (nv=0;nv<qra_V;nv++) {
|
|
|
|
ndeg = qra_vdeg[nv]; // degree of current node
|
|
msgbase = nv*qra_MAXVDEG; // base to msg index row for the current node
|
|
|
|
// copy intrinsics on v->c
|
|
for (k=1;k<ndeg;k++) {
|
|
imsg = qra_v2cmidx[msgbase+k];
|
|
pd_init(V2CMSG(imsg),ADDRMSG(pix,nv),qra_M);
|
|
}
|
|
}
|
|
|
|
// message passing algorithm iterations ------------------------------
|
|
|
|
for (nit=0;nit<maxiter;nit++) {
|
|
|
|
// c->v step -----------------------------------------------------
|
|
// Computes messages from code checks to code variables.
|
|
// As the first qra_V checks are associated with intrinsic information
|
|
// (the code tables have been constructed in this way)
|
|
// we need to do this step only for code checks in the range [qra_V..qra_C)
|
|
|
|
// The convolutions of probability distributions over the alphabet of a finite field GF(qra_M)
|
|
// are performed with a fast convolution algorithm over the given field.
|
|
//
|
|
// I.e. given the code check x1+x2+x3 = 0 (with x1,x2,x3 in GF(2^m))
|
|
// and given Prob(x2) and Prob(x3), we have that:
|
|
// Prob(x1=X1) = Prob((x2+x3)=X1) = sum((Prob(x2=X2)*Prob(x3=(X1+X2))) for all the X2s in the field
|
|
// This translates to Prob(x1) = IWHT(WHT(Prob(x2))*WHT(Prob(x3)))
|
|
// where WHT and IWHT are the direct and inverse Walsh-Hadamard transforms of the argument.
|
|
// Note that the WHT and the IWHF differs only by a multiplicative coefficent and since in this step
|
|
// we don't need that the output distribution is normalized we use the relationship
|
|
// Prob(x1) =(proportional to) WH(WH(Prob(x2))*WH(Prob(x3)))
|
|
|
|
// In general given the check code x1+x2+x3+..+xm = 0
|
|
// the output distribution of a variable given the distributions of the other m-1 variables
|
|
// is the inverse WHT of the product of the WHTs of the distribution of the other m-1 variables
|
|
// The complexity of this algorithm scales with M*log2(M) instead of the M^2 complexity of
|
|
// the brute force approach (M=size of the alphabet)
|
|
|
|
for (nc=qra_V;nc<qra_C;nc++) {
|
|
|
|
ndeg = qra_cdeg[nc]; // degree of current node
|
|
|
|
if (ndeg==1) // this should never happen (code factors must have deg>1)
|
|
return -2; // bad code tables
|
|
|
|
msgbase = nc*qra_MAXCDEG; // base to msg index row for the current node
|
|
|
|
// transforms inputs in the Walsh-Hadamard "frequency" domain
|
|
// v->c -> fwht(v->c)
|
|
for (k=0;k<ndeg;k++) {
|
|
imsg = qra_c2vmidx[msgbase+k]; // msg index
|
|
np_fwht(qra_m,V2CMSG(imsg),V2CMSG(imsg)); // compute fwht
|
|
}
|
|
|
|
// compute products and transform them back in the WH "time" domain
|
|
for (k=0;k<ndeg;k++) {
|
|
|
|
// init output message to uniform distribution
|
|
pd_init(msgout,pd_uniform(qra_m),qra_M);
|
|
|
|
// c->v = prod(fwht(v->c))
|
|
// TODO: we assume that checks degrees are not larger than three but
|
|
// if they are larger the products can be computed more efficiently
|
|
for (kk=0;kk<ndeg;kk++)
|
|
if (kk!=k) {
|
|
imsg = qra_c2vmidx[msgbase+kk];
|
|
pd_imul(msgout,V2CMSG(imsg),qra_m);
|
|
}
|
|
|
|
// transform product back in the WH "time" domain
|
|
|
|
// Very important trick:
|
|
// we bias WHT[0] so that the sum of output pd components is always strictly positive
|
|
// this helps avoiding the effects of underflows in the v->c steps when multipling
|
|
// small fp numbers
|
|
msgout[0]+=1E-7f; // TODO: define the bias accordingly to the field size
|
|
|
|
np_fwht(qra_m,msgout,msgout);
|
|
|
|
// inverse weight and output
|
|
imsg = qra_c2vmidx[msgbase+k]; // current output msg index
|
|
wmsg = qra_msgw[imsg]; // current msg weight
|
|
|
|
if (wmsg==0)
|
|
pd_init(C2VMSG(imsg),msgout,qra_M);
|
|
else
|
|
// output p(alfa^(-w)*x)
|
|
pd_bwdperm(C2VMSG(imsg),msgout, MSGPERM(wmsg), qra_M);
|
|
|
|
} // for (k=0;k<ndeg;k++)
|
|
|
|
} // for (nc=qra_V;nc<qra_C;nc++)
|
|
|
|
// v->c step -----------------------------------------------------
|
|
for (nv=0;nv<qra_V;nv++) {
|
|
|
|
ndeg = qra_vdeg[nv]; // degree of current node
|
|
msgbase = nv*qra_MAXVDEG; // base to msg index row for the current node
|
|
|
|
for (k=0;k<ndeg;k++) {
|
|
// init output message to uniform distribution
|
|
pd_init(msgout,pd_uniform(qra_m),qra_M);
|
|
|
|
// v->c msg = prod(c->v)
|
|
// TODO: factor factors to reduce the number of computations for high degree nodes
|
|
for (kk=0;kk<ndeg;kk++)
|
|
if (kk!=k) {
|
|
imsg = qra_v2cmidx[msgbase+kk];
|
|
pd_imul(msgout,C2VMSG(imsg),qra_m);
|
|
}
|
|
|
|
#ifdef QRA_DEBUG
|
|
// normalize and check if product of messages v->c are null
|
|
// normalize output to a probability distribution
|
|
if (pd_norm(msgout,qra_m)<=0) {
|
|
// dump msgin;
|
|
printf("warning: v->c pd with invalid norm. nit=%d nv=%d k=%d\n",nit,nv,k);
|
|
for (kk=0;kk<ndeg;kk++) {
|
|
imsg = qra_v2cmidx[msgbase+kk];
|
|
pd_print(imsg,C2VMSG(imsg),qra_M);
|
|
}
|
|
printf("-----------------\n");
|
|
}
|
|
#else
|
|
// normalize the result to a probability distribution
|
|
pd_norm(msgout,qra_m);
|
|
#endif
|
|
// weight and output
|
|
imsg = qra_v2cmidx[msgbase+k]; // current output msg index
|
|
wmsg = qra_msgw[imsg]; // current msg weight
|
|
|
|
if (wmsg==0) {
|
|
pd_init(V2CMSG(imsg),msgout,qra_M);
|
|
}
|
|
else {
|
|
// output p(alfa^w*x)
|
|
pd_fwdperm(V2CMSG(imsg),msgout, MSGPERM(wmsg), qra_M);
|
|
}
|
|
|
|
} // for (k=0;k<ndeg;k++)
|
|
} // for (nv=0;nv<qra_V;nv++)
|
|
|
|
// check extrinsic information ------------------------------
|
|
// We assume that decoding is successful if each of the extrinsic
|
|
// symbol probability is close to ej, where ej = [0 0 0 1(j-th position) 0 0 0 ]
|
|
// Therefore, for each symbol k in the codeword we compute max(prob(Xk))
|
|
// and we stop the iterations if sum(max(prob(xk)) is close to the codeword length
|
|
// Note: this is a more restrictive criterium than that of computing the a
|
|
// posteriori probability of each symbol, making a hard decision and then check
|
|
// if the codeword syndrome is null.
|
|
// WARNING: this is tricky and probably works only for the particular class of RA codes
|
|
// we are coping with (we designed the code weights so that for any input symbol the
|
|
// sum of its weigths is always 0, thus terminating the accumulator trellis to zero
|
|
// for every combination of the systematic symbols).
|
|
// More generally we should instead compute the max a posteriori probabilities
|
|
// (as a product of the intrinsic and extrinsic information), make a symbol by symbol hard
|
|
// decision and then check that the syndrome of the result is indeed null.
|
|
|
|
totex = 0;
|
|
for (nv=0;nv<qra_V;nv++)
|
|
totex += pd_max(V2CMSG(nv),qra_M);
|
|
|
|
if (totex>(1.*(qra_V)-0.01)) {
|
|
// the total maximum extrinsic information of each symbol in the codeword
|
|
// is very close to one. This means that we have reached the (1,1) point in the
|
|
// code EXIT chart(s) and we have successfully decoded the input.
|
|
rc = nit;
|
|
break; // remove the break to evaluate the decoder speed performance as a function of the max iterations number)
|
|
}
|
|
|
|
} // for (nit=0;nit<maxiter;nit++)
|
|
|
|
// copy extrinsic information to output to do the actual max a posteriori prob decoding
|
|
pd_init(pex,V2CMSG(0),(qra_M*qra_V));
|
|
return rc;
|
|
}
|
|
|
|
void qra_mapdecode(const qracode *pcode, int *xdec, float *pex, const float *pix)
|
|
{
|
|
// Maximum a posteriori probability decoding.
|
|
// Given the intrinsic information (pix) and extrinsic information (pex) (computed with qra_extrinsic(...))
|
|
// compute pmap = pex*pix and decode each (information) symbol of the received codeword
|
|
// as the symbol which maximizes pmap
|
|
|
|
// Returns:
|
|
// xdec[k] = decoded (information) symbols k=[0..qra_K-1]
|
|
|
|
// Note: pex is destroyed and overwritten with mapp
|
|
|
|
const int qra_M = pcode->M;
|
|
const int qra_m = pcode->m;
|
|
const int qra_K = pcode->K;
|
|
|
|
int k;
|
|
|
|
for (k=0;k<qra_K;k++) {
|
|
// compute a posteriori prob
|
|
pd_imul(PD_ROWADDR(pex,qra_M,k),PD_ROWADDR(pix,qra_M,k),qra_m);
|
|
xdec[k]=pd_argmax(NULL, PD_ROWADDR(pex,qra_M,k), qra_M);
|
|
}
|
|
}
|