mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-14 16:11:50 -05:00
297 lines
11 KiB
C++
297 lines
11 KiB
C++
// Copyright John Maddock 2006.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable: 4127) // conditional expression is constant.
|
|
# pragma warning(disable: 4245) // int/unsigned int conversion
|
|
#endif
|
|
|
|
// Return infinities not exceptions:
|
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
|
|
|
#include <boost/cstdfloat.hpp>
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/floating_point_comparison.hpp>
|
|
#include <boost/math/special_functions/factorials.hpp>
|
|
#include <boost/math/special_functions/gamma.hpp>
|
|
#include <boost/math/tools/stats.hpp>
|
|
#include <boost/math/tools/test.hpp>
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
template <class T>
|
|
T naive_falling_factorial(T x, unsigned n)
|
|
{
|
|
if(n == 0)
|
|
return 1;
|
|
T result = x;
|
|
while(--n)
|
|
{
|
|
x -= 1;
|
|
result *= x;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <class T>
|
|
void test_spots(T)
|
|
{
|
|
//
|
|
// Basic sanity checks.
|
|
//
|
|
T tolerance = boost::math::tools::epsilon<T>() * 100 * 2; // 2 eps as a percent.
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::factorial<T>(0),
|
|
static_cast<T>(1), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::factorial<T>(1),
|
|
static_cast<T>(1), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::factorial<T>(10),
|
|
static_cast<T>(3628800L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::unchecked_factorial<T>(0),
|
|
static_cast<T>(1), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::unchecked_factorial<T>(1),
|
|
static_cast<T>(1), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::unchecked_factorial<T>(10),
|
|
static_cast<T>(3628800L), tolerance);
|
|
|
|
//
|
|
// Try some double factorials:
|
|
//
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(0),
|
|
static_cast<T>(1), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(1),
|
|
static_cast<T>(1), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(2),
|
|
static_cast<T>(2), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(5),
|
|
static_cast<T>(15), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(10),
|
|
static_cast<T>(3840), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(19),
|
|
static_cast<T>(6.547290750e8Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(24),
|
|
static_cast<T>(1.961990553600000e12Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(33),
|
|
static_cast<T>(6.33265987076285062500000e18Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(42),
|
|
static_cast<T>(1.0714547155728479551488000000e26Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::double_factorial<T>(47),
|
|
static_cast<T>(1.19256819277443412353990764062500000e30Q), tolerance);
|
|
|
|
if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024))
|
|
{
|
|
BOOST_CHECK_EQUAL(
|
|
::boost::math::double_factorial<T>(320),
|
|
std::numeric_limits<T>::infinity());
|
|
BOOST_CHECK_EQUAL(
|
|
::boost::math::double_factorial<T>(301),
|
|
std::numeric_limits<T>::infinity());
|
|
}
|
|
//
|
|
// Rising factorials:
|
|
//
|
|
tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent.
|
|
if(std::numeric_limits<T>::is_specialized == 0)
|
|
tolerance *= 5; // higher error rates without Lanczos support
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(3), 4),
|
|
static_cast<T>(360), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(7), -4),
|
|
static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(120.5f), 8),
|
|
static_cast<T>(5.58187566784927180664062500e16Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(120.5f), -4),
|
|
static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(5000.25f), 8),
|
|
static_cast<T>(3.92974581976666067544013393509103775024414062500000e29Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(5000.25f), -7),
|
|
static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(30.25), 21),
|
|
static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33Q), tolerance * 2);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(30.25), -21),
|
|
static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-30.25), 21),
|
|
static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26Q), tolerance * 2);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-30.25), -21),
|
|
static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34Q), 2 * tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-30.25), 5),
|
|
static_cast<T>(-1.78799177197265625000000e7Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-30.25), -5),
|
|
static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-30.25), 6),
|
|
static_cast<T>(4.5146792242309570312500000e8Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-30.25), -6),
|
|
static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-3), 6),
|
|
static_cast<T>(0), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-3.25), 6),
|
|
static_cast<T>(2.99926757812500Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-5.25), 6),
|
|
static_cast<T>(50.987548828125000000000000Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-5.25), 13),
|
|
static_cast<T>(127230.91046623885631561279296875000Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-3.25), -6),
|
|
static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-5.25), -6),
|
|
static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6Q), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::rising_factorial(static_cast<T>(-5.25), -13),
|
|
static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14Q), tolerance);
|
|
|
|
//
|
|
// Falling factorials:
|
|
//
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(30.25), 0),
|
|
static_cast<T>(naive_falling_factorial(30.25Q, 0)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(30.25), 1),
|
|
static_cast<T>(naive_falling_factorial(30.25Q, 1)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(30.25), 2),
|
|
static_cast<T>(naive_falling_factorial(30.25Q, 2)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(30.25), 5),
|
|
static_cast<T>(naive_falling_factorial(30.25Q, 5)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(30.25), 22),
|
|
static_cast<T>(naive_falling_factorial(30.25Q, 22)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(100.5), 6),
|
|
static_cast<T>(naive_falling_factorial(100.5Q, 6)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(30.75), 30),
|
|
static_cast<T>(naive_falling_factorial(30.75Q, 30)),
|
|
tolerance * 3);
|
|
if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50)
|
|
{
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(-30.75Q), 30),
|
|
static_cast<T>(naive_falling_factorial(-30.75Q, 30)),
|
|
tolerance * 3);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(-30.75Q), 27),
|
|
static_cast<T>(naive_falling_factorial(-30.75Q, 27)),
|
|
tolerance * 3);
|
|
}
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(-12.0), 6),
|
|
static_cast<T>(naive_falling_factorial(-12.0Q, 6)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(-12), 5),
|
|
static_cast<T>(naive_falling_factorial(-12.0Q, 5)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(-3.0), 6),
|
|
static_cast<T>(naive_falling_factorial(-3.0Q, 6)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(-3), 5),
|
|
static_cast<T>(naive_falling_factorial(-3.0Q, 5)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(3.0), 6),
|
|
static_cast<T>(naive_falling_factorial(3.0Q, 6)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(3), 5),
|
|
static_cast<T>(naive_falling_factorial(3.0Q, 5)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(3.25), 4),
|
|
static_cast<T>(naive_falling_factorial(3.25Q, 4)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(3.25), 5),
|
|
static_cast<T>(naive_falling_factorial(3.25Q, 5)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(3.25), 6),
|
|
static_cast<T>(naive_falling_factorial(3.25Q, 6)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(3.25), 7),
|
|
static_cast<T>(naive_falling_factorial(3.25Q, 7)),
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::falling_factorial(static_cast<T>(8.25), 12),
|
|
static_cast<T>(naive_falling_factorial(8.25Q, 12)),
|
|
tolerance);
|
|
|
|
|
|
tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent.
|
|
unsigned i = boost::math::max_factorial<T>::value;
|
|
if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double)))
|
|
{
|
|
// Without Lanczos support, tgamma isn't accurate enough for this test:
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::unchecked_factorial<T>(i),
|
|
boost::math::tgamma(static_cast<T>(i+1)), tolerance);
|
|
}
|
|
|
|
i += 10;
|
|
while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>())
|
|
{
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::factorial<T>(i),
|
|
boost::math::tgamma(static_cast<T>(i+1)), tolerance);
|
|
i += 10;
|
|
}
|
|
} // template <class T> void test_spots(T)
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
BOOST_MATH_CONTROL_FP;
|
|
test_spots(0.0Q);
|
|
cout << "max factorial for __float128" << boost::math::max_factorial<boost::floatmax_t>::value << endl;
|
|
}
|
|
|
|
|
|
|