mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-22 04:11:16 -05:00
133 lines
3.9 KiB
Fortran
133 lines
3.9 KiB
Fortran
subroutine filbig(dd,nmax,f0,newdat,nfsample,xpol,c4a,c4b,n4)
|
|
|
|
! Filter and downsample complex data stored in array dd(4,nmax).
|
|
! Output is downsampled from 96000 Hz to 1375.125 Hz.
|
|
|
|
use timer_module, only: timer
|
|
parameter (MAXFFT1=5376000,MAXFFT2=77175)
|
|
real*4 dd(4,nmax) !Input data
|
|
complex ca(MAXFFT1),cb(MAXFFT1) !FFTs of input
|
|
complex c4a(MAXFFT2),c4b(MAXFFT2) !Output data
|
|
real*8 df
|
|
real halfpulse(8) !Impulse response of filter (one sided)
|
|
complex cfilt(MAXFFT2) !Filter (complex; imag = 0)
|
|
real rfilt(MAXFFT2) !Filter (real)
|
|
integer*8 plan1,plan2,plan3,plan4,plan5
|
|
logical first,xpol
|
|
include 'fftw3.f'
|
|
common/cacb/ca,cb
|
|
equivalence (rfilt,cfilt)
|
|
data first/.true./,npatience/1/
|
|
data halfpulse/114.97547150,36.57879257,-20.93789101, &
|
|
5.89886379,1.59355187,-2.49138308,0.60910773,-0.04248129/
|
|
save
|
|
|
|
if(nmax.lt.0) go to 900
|
|
|
|
nfft1=MAXFFT1
|
|
nfft2=MAXFFT2
|
|
if(nfsample.eq.95238) then
|
|
nfft1=5120000
|
|
nfft2=74088
|
|
endif
|
|
|
|
if(first) then
|
|
nflags=FFTW_ESTIMATE
|
|
if(npatience.eq.1) nflags=FFTW_ESTIMATE_PATIENT
|
|
if(npatience.eq.2) nflags=FFTW_MEASURE
|
|
if(npatience.eq.3) nflags=FFTW_PATIENT
|
|
if(npatience.eq.4) nflags=FFTW_EXHAUSTIVE
|
|
|
|
! Plan the FFTs just once
|
|
call timer('FFTplans ',0)
|
|
call sfftw_plan_dft_1d(plan1,nfft1,ca,ca,FFTW_BACKWARD,nflags)
|
|
call sfftw_plan_dft_1d(plan2,nfft1,cb,cb,FFTW_BACKWARD,nflags)
|
|
call sfftw_plan_dft_1d(plan3,nfft2,c4a,c4a,FFTW_FORWARD,nflags)
|
|
call sfftw_plan_dft_1d(plan4,nfft2,c4b,c4b,FFTW_FORWARD,nflags)
|
|
call sfftw_plan_dft_1d(plan5,nfft2,cfilt,cfilt,FFTW_BACKWARD,nflags)
|
|
call timer('FFTplans ',1)
|
|
|
|
! Convert impulse response to filter function
|
|
do i=1,nfft2
|
|
cfilt(i)=0.
|
|
enddo
|
|
fac=0.00625/nfft1
|
|
cfilt(1)=fac*halfpulse(1)
|
|
do i=2,8
|
|
cfilt(i)=fac*halfpulse(i)
|
|
cfilt(nfft2+2-i)=fac*halfpulse(i)
|
|
enddo
|
|
call sfftw_execute(plan5)
|
|
|
|
base=cfilt(nfft2/2+1)
|
|
do i=1,nfft2
|
|
rfilt(i)=real(cfilt(i))-base
|
|
enddo
|
|
|
|
df=96000.d0/nfft1
|
|
if(nfsample.eq.95238) df=95238.1d0/nfft1
|
|
first=.false.
|
|
endif
|
|
|
|
! When new data comes along, we need to compute a new "big FFT"
|
|
! If we just have a new f0, continue with the existing ca and cb.
|
|
|
|
if(newdat.ne.0 .or. sum(abs(ca)).eq.0.0) then !### Test on ca should be unnecessary?
|
|
nz=min(nmax,nfft1)
|
|
do i=1,nz
|
|
ca(i)=cmplx(dd(1,i),dd(2,i))
|
|
if(xpol) cb(i)=cmplx(dd(3,i),dd(4,i))
|
|
enddo
|
|
|
|
if(nmax.lt.nfft1) then
|
|
do i=nmax+1,nfft1
|
|
ca(i)=0.
|
|
if(xpol) cb(i)=0.
|
|
enddo
|
|
endif
|
|
call timer('FFTbig ',0)
|
|
call sfftw_execute(plan1)
|
|
if(xpol) call sfftw_execute(plan2)
|
|
call timer('FFTbig ',1)
|
|
newdat=0
|
|
endif
|
|
|
|
! NB: f0 is the frequency at which we want our filter centered.
|
|
! i0 is the bin number in ca and cb closest to f0.
|
|
|
|
i0=nint(f0/df) + 1
|
|
nh=nfft2/2
|
|
do i=1,nh !Copy data into c4a and c4b,
|
|
j=i0+i-1 !and apply the filter function
|
|
if(j.ge.1 .and. j.le.nfft1) then
|
|
c4a(i)=rfilt(i)*ca(j)
|
|
if(xpol) c4b(i)=rfilt(i)*cb(j)
|
|
else
|
|
c4a(i)=0.
|
|
if(xpol) c4b(i)=0.
|
|
endif
|
|
enddo
|
|
do i=nh+1,nfft2
|
|
j=i0+i-1-nfft2
|
|
if(j.lt.1) j=j+nfft1 !nfft1 was nfft2
|
|
c4a(i)=rfilt(i)*ca(j)
|
|
if(xpol) c4b(i)=rfilt(i)*cb(j)
|
|
enddo
|
|
|
|
! Do the short reverse transform, to go back to time domain.
|
|
call timer('FFTsmall',0)
|
|
call sfftw_execute(plan3)
|
|
if(xpol) call sfftw_execute(plan4)
|
|
call timer('FFTsmall',1)
|
|
n4=min(nmax/64,nfft2)
|
|
go to 999
|
|
|
|
900 call sfftw_destroy_plan(plan1)
|
|
call sfftw_destroy_plan(plan2)
|
|
call sfftw_destroy_plan(plan3)
|
|
call sfftw_destroy_plan(plan4)
|
|
call sfftw_destroy_plan(plan5)
|
|
|
|
999 return
|
|
end subroutine filbig
|