mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			152 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 [auto_generated]
 | 
						|
 libs/numeric/odeint/examples/black_hole.cpp
 | 
						|
 | 
						|
 [begin_description]
 | 
						|
 This example shows how the __float128 from gcc libquadmath can be used with odeint.
 | 
						|
 [end_description]
 | 
						|
 | 
						|
 Copyright 2012 Karsten Ahnert
 | 
						|
 Copyright 2012 Lee Hodgkinson
 | 
						|
 Copyright 2012 Mario Mulansky
 | 
						|
 | 
						|
 Distributed under the Boost Software License, Version 1.0.
 | 
						|
 (See accompanying file LICENSE_1_0.txt or
 | 
						|
 copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 */
 | 
						|
 | 
						|
#include <cstdlib>
 | 
						|
#include <cmath>
 | 
						|
#include <iostream>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <vector>
 | 
						|
#include <complex>
 | 
						|
 | 
						|
extern "C" {
 | 
						|
#include <quadmath.h>
 | 
						|
}
 | 
						|
 | 
						|
const __float128 zero =strtoflt128 ("0.0", NULL);
 | 
						|
 | 
						|
namespace std {
 | 
						|
 | 
						|
    inline __float128 abs( __float128 x )
 | 
						|
    {
 | 
						|
        return fabsq( x );
 | 
						|
    }
 | 
						|
 | 
						|
    inline __float128 sqrt( __float128 x )
 | 
						|
    {
 | 
						|
        return sqrtq( x );
 | 
						|
    }
 | 
						|
 | 
						|
    inline __float128 pow( __float128 x , __float128 y )
 | 
						|
    {
 | 
						|
        return powq( x , y );
 | 
						|
    }
 | 
						|
 | 
						|
    inline __float128 abs( std::complex< __float128 > x )
 | 
						|
    {
 | 
						|
        return sqrtq( x.real() * x.real() + x.imag() * x.imag() );
 | 
						|
    }
 | 
						|
 | 
						|
    inline std::complex< __float128 > pow( std::complex< __float128> x , __float128 y )
 | 
						|
    {
 | 
						|
        __float128 r = pow( abs(x) , y );
 | 
						|
        __float128 phi = atanq( x.imag() / x.real() );
 | 
						|
        return std::complex< __float128 >( r * cosq( y * phi ) , r * sinq( y * phi ) );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
inline std::ostream& operator<< (std::ostream& os, const __float128& f) {
 | 
						|
 | 
						|
    char* y = new char[1000];
 | 
						|
    quadmath_snprintf(y, 1000, "%.30Qg", f) ;
 | 
						|
    os.precision(30);
 | 
						|
    os<<y;
 | 
						|
    delete[] y;
 | 
						|
    return os;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#include <boost/array.hpp>
 | 
						|
#include <boost/range/algorithm.hpp>
 | 
						|
#include <boost/range/adaptor/filtered.hpp>
 | 
						|
#include <boost/range/numeric.hpp>
 | 
						|
#include <boost/numeric/odeint.hpp>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
using namespace boost::numeric::odeint;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
typedef __float128 my_float;
 | 
						|
typedef std::vector< std::complex < my_float > > state_type;
 | 
						|
 | 
						|
struct radMod
 | 
						|
{
 | 
						|
    my_float m_om;
 | 
						|
    my_float m_l;
 | 
						|
 | 
						|
    radMod( my_float om , my_float l )
 | 
						|
        : m_om( om ) , m_l( l ) { }
 | 
						|
 | 
						|
    void operator()( const state_type &x , state_type &dxdt , my_float r ) const
 | 
						|
    {
 | 
						|
 | 
						|
        dxdt[0] = x[1];
 | 
						|
        dxdt[1] = -(2*(r-1)/(r*(r-2)))*x[1]-((m_om*m_om*r*r/((r-2)*(r-2)))-(m_l*(m_l+1)/(r*(r-2))))*x[0];
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
int main( int argc , char **argv )
 | 
						|
{
 | 
						|
 | 
						|
 | 
						|
    state_type x(2);
 | 
						|
 | 
						|
    my_float re0 = strtoflt128( "-0.00008944230755601224204687038354994353820468" , NULL );
 | 
						|
    my_float im0 = strtoflt128( "0.00004472229441850588228136889483397204368247" , NULL );
 | 
						|
    my_float re1 = strtoflt128( "-4.464175354293244250869336196695966076150E-6 " , NULL );
 | 
						|
    my_float im1 = strtoflt128( "-8.950483248390306670770345406051469584488E-6" , NULL );
 | 
						|
 | 
						|
    x[0] = complex< my_float >( re0 ,im0 );
 | 
						|
    x[1] = complex< my_float >( re1 ,im1 );
 | 
						|
 | 
						|
    const my_float dt =strtoflt128 ("-0.001", NULL);
 | 
						|
    const my_float start =strtoflt128 ("10000.0", NULL);
 | 
						|
    const my_float end =strtoflt128 ("9990.0", NULL);
 | 
						|
    const my_float omega =strtoflt128 ("2.0", NULL);
 | 
						|
    const my_float ell =strtoflt128 ("1.0", NULL);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    my_float abs_err = strtoflt128( "1.0E-15" , NULL ) , rel_err = strtoflt128( "1.0E-10" , NULL );
 | 
						|
    my_float a_x = strtoflt128( "1.0" , NULL ) , a_dxdt = strtoflt128( "1.0" , NULL );
 | 
						|
 | 
						|
    typedef runge_kutta_dopri5< state_type, my_float > dopri5_type;
 | 
						|
    typedef controlled_runge_kutta< dopri5_type > controlled_dopri5_type;
 | 
						|
    typedef dense_output_runge_kutta< controlled_dopri5_type > dense_output_dopri5_type;
 | 
						|
    
 | 
						|
    dense_output_dopri5_type dopri5( controlled_dopri5_type( default_error_checker< my_float >( abs_err , rel_err , a_x , a_dxdt ) ) );
 | 
						|
 | 
						|
    std::for_each( make_adaptive_time_iterator_begin(dopri5 , radMod(omega , ell) , x , start , end , dt) ,
 | 
						|
                   make_adaptive_time_iterator_end(dopri5 , radMod(omega , ell) , x ) ,
 | 
						|
                   []( const std::pair< state_type&, my_float > &x ) {
 | 
						|
                       std::cout << x.second << ", " << x.first[0].real() << "\n"; }
 | 
						|
        );
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |