WSJT-X/boost/math/interpolators/detail/barycentric_rational_detail.hpp
Bill Somerville d361e123c6 Squashed 'boost/' changes from d9443bc48..c27aa31f0
c27aa31f0 Updated Boost to v1.70.0 including iterator range math numeric crc circular_buffer multi_index intrusive

git-subtree-dir: boost
git-subtree-split: c27aa31f06ebf1a91b3fa3ae9df9b5efdf14ec9f
2019-07-02 23:38:24 +01:00

216 lines
7.0 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright Nick Thompson, 2017
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
#define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
#include <vector>
#include <utility> // for std::move
#include <algorithm> // for std::is_sorted
#include <boost/lexical_cast.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/core/demangle.hpp>
#include <boost/assert.hpp>
namespace boost{ namespace math{ namespace detail{
template<class Real>
class barycentric_rational_imp
{
public:
template <class InputIterator1, class InputIterator2>
barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3);
barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order = 3);
Real operator()(Real x) const;
Real prime(Real x) const;
// The barycentric weights are not really that interesting; except to the unit tests!
Real weight(size_t i) const { return m_w[i]; }
std::vector<Real>&& return_x()
{
return std::move(m_x);
}
std::vector<Real>&& return_y()
{
return std::move(m_y);
}
private:
void calculate_weights(size_t approximation_order);
std::vector<Real> m_x;
std::vector<Real> m_y;
std::vector<Real> m_w;
};
template <class Real>
template <class InputIterator1, class InputIterator2>
barycentric_rational_imp<Real>::barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order)
{
std::ptrdiff_t n = std::distance(start_x, end_x);
if (approximation_order >= (std::size_t)n)
{
throw std::domain_error("Approximation order must be < data length.");
}
// Big sad memcpy.
m_x.resize(n);
m_y.resize(n);
for(unsigned i = 0; start_x != end_x; ++start_x, ++start_y, ++i)
{
// But if we're going to do a memcpy, we can do some error checking which is inexpensive relative to the copy:
if(boost::math::isnan(*start_x))
{
std::string msg = std::string("x[") + boost::lexical_cast<std::string>(i) + "] is a NAN";
throw std::domain_error(msg);
}
if(boost::math::isnan(*start_y))
{
std::string msg = std::string("y[") + boost::lexical_cast<std::string>(i) + "] is a NAN";
throw std::domain_error(msg);
}
m_x[i] = *start_x;
m_y[i] = *start_y;
}
calculate_weights(approximation_order);
}
template <class Real>
barycentric_rational_imp<Real>::barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y,size_t approximation_order) : m_x(std::move(x)), m_y(std::move(y))
{
BOOST_ASSERT_MSG(m_x.size() == m_y.size(), "There must be the same number of abscissas and ordinates.");
BOOST_ASSERT_MSG(approximation_order < m_x.size(), "Approximation order must be < data length.");
BOOST_ASSERT_MSG(std::is_sorted(m_x.begin(), m_x.end()), "The abscissas must be listed in increasing order x[0] < x[1] < ... < x[n-1].");
calculate_weights(approximation_order);
}
template<class Real>
void barycentric_rational_imp<Real>::calculate_weights(size_t approximation_order)
{
using std::abs;
int64_t n = m_x.size();
m_w.resize(n, 0);
for(int64_t k = 0; k < n; ++k)
{
int64_t i_min = (std::max)(k - (int64_t) approximation_order, (int64_t) 0);
int64_t i_max = k;
if (k >= n - (std::ptrdiff_t)approximation_order)
{
i_max = n - approximation_order - 1;
}
for(int64_t i = i_min; i <= i_max; ++i)
{
Real inv_product = 1;
int64_t j_max = (std::min)(static_cast<int64_t>(i + approximation_order), static_cast<int64_t>(n - 1));
for(int64_t j = i; j <= j_max; ++j)
{
if (j == k)
{
continue;
}
Real diff = m_x[k] - m_x[j];
using std::numeric_limits;
if (abs(diff) < (numeric_limits<Real>::min)())
{
std::string msg = std::string("Spacing between x[")
+ boost::lexical_cast<std::string>(k) + std::string("] and x[")
+ boost::lexical_cast<std::string>(i) + std::string("] is ")
+ boost::lexical_cast<std::string>(diff) + std::string(", which is smaller than the epsilon of ")
+ boost::core::demangle(typeid(Real).name());
throw std::logic_error(msg);
}
inv_product *= diff;
}
if (i % 2 == 0)
{
m_w[k] += 1/inv_product;
}
else
{
m_w[k] -= 1/inv_product;
}
}
}
}
template<class Real>
Real barycentric_rational_imp<Real>::operator()(Real x) const
{
Real numerator = 0;
Real denominator = 0;
for(size_t i = 0; i < m_x.size(); ++i)
{
// Presumably we should see if the accuracy is improved by using ULP distance of say, 5 here, instead of testing for floating point equality.
// However, it has been shown that if x approx x_i, but x != x_i, then inaccuracy in the numerator cancels the inaccuracy in the denominator,
// and the result is fairly accurate. See: http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715
if (x == m_x[i])
{
return m_y[i];
}
Real t = m_w[i]/(x - m_x[i]);
numerator += t*m_y[i];
denominator += t;
}
return numerator/denominator;
}
/*
* A formula for computing the derivative of the barycentric representation is given in
* "Some New Aspects of Rational Interpolation", by Claus Schneider and Wilhelm Werner,
* Mathematics of Computation, v47, number 175, 1986.
* http://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/S0025-5718-1986-0842136-8.pdf
* and reviewed in
* Recent developments in barycentric rational interpolation
* JeanPaul Berrut, Richard Baltensperger and Hans D. Mittelmann
*
* Is it possible to complete this in one pass through the data?
*/
template<class Real>
Real barycentric_rational_imp<Real>::prime(Real x) const
{
Real rx = this->operator()(x);
Real numerator = 0;
Real denominator = 0;
for(size_t i = 0; i < m_x.size(); ++i)
{
if (x == m_x[i])
{
Real sum = 0;
for (size_t j = 0; j < m_x.size(); ++j)
{
if (j == i)
{
continue;
}
sum += m_w[j]*(m_y[i] - m_y[j])/(m_x[i] - m_x[j]);
}
return -sum/m_w[i];
}
Real t = m_w[i]/(x - m_x[i]);
Real diff = (rx - m_y[i])/(x-m_x[i]);
numerator += t*diff;
denominator += t;
}
return numerator/denominator;
}
}}}
#endif