WSJT-X/boost/math/interpolators/detail/cubic_b_spline_detail.hpp
Bill Somerville d361e123c6 Squashed 'boost/' changes from d9443bc48..c27aa31f0
c27aa31f0 Updated Boost to v1.70.0 including iterator range math numeric crc circular_buffer multi_index intrusive

git-subtree-dir: boost
git-subtree-split: c27aa31f06ebf1a91b3fa3ae9df9b5efdf14ec9f
2019-07-02 23:38:24 +01:00

288 lines
9.1 KiB
C++

// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CUBIC_B_SPLINE_DETAIL_HPP
#define CUBIC_B_SPLINE_DETAIL_HPP
#include <limits>
#include <cmath>
#include <vector>
#include <memory>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
namespace boost{ namespace math{ namespace detail{
template <class Real>
class cubic_b_spline_imp
{
public:
// If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
// f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
template <class BidiIterator>
cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
Real operator()(Real x) const;
Real prime(Real x) const;
private:
std::vector<Real> m_beta;
Real m_h_inv;
Real m_a;
Real m_avg;
};
template <class Real>
Real b3_spline(Real x)
{
using std::abs;
Real absx = abs(x);
if (absx < 1)
{
Real y = 2 - absx;
Real z = 1 - absx;
return boost::math::constants::sixth<Real>()*(y*y*y - 4*z*z*z);
}
if (absx < 2)
{
Real y = 2 - absx;
return boost::math::constants::sixth<Real>()*y*y*y;
}
return (Real) 0;
}
template<class Real>
Real b3_spline_prime(Real x)
{
if (x < 0)
{
return -b3_spline_prime(-x);
}
if (x < 1)
{
return x*(3*boost::math::constants::half<Real>()*x - 2);
}
if (x < 2)
{
return -boost::math::constants::half<Real>()*(2 - x)*(2 - x);
}
return (Real) 0;
}
template <class Real>
template <class BidiIterator>
cubic_b_spline_imp<Real>::cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
Real left_endpoint_derivative, Real right_endpoint_derivative) : m_a(left_endpoint), m_avg(0)
{
using boost::math::constants::third;
std::size_t length = end_p - f;
if (length < 5)
{
if (boost::math::isnan(left_endpoint_derivative) || boost::math::isnan(right_endpoint_derivative))
{
throw std::logic_error("Interpolation using a cubic b spline with derivatives estimated at the endpoints requires at least 5 points.\n");
}
if (length < 3)
{
throw std::logic_error("Interpolation using a cubic b spline requires at least 3 points.\n");
}
}
if (boost::math::isnan(left_endpoint))
{
throw std::logic_error("Left endpoint is NAN; this is disallowed.\n");
}
if (left_endpoint + length*step_size >= (std::numeric_limits<Real>::max)())
{
throw std::logic_error("Right endpoint overflows the maximum representable number of the specified precision.\n");
}
if (step_size <= 0)
{
throw std::logic_error("The step size must be strictly > 0.\n");
}
// Storing the inverse of the stepsize does provide a measurable speedup.
// It's not huge, but nonetheless worthwhile.
m_h_inv = 1/step_size;
// Following Kress's notation, s'(a) = a1, s'(b) = b1
Real a1 = left_endpoint_derivative;
// See the finite-difference table on Wikipedia for reference on how
// to construct high-order estimates for one-sided derivatives:
// https://en.wikipedia.org/wiki/Finite_difference_coefficient#Forward_and_backward_finite_difference
// Here, we estimate then to O(h^4), as that is the maximum accuracy we could obtain from this method.
if (boost::math::isnan(a1))
{
// For simple functions (linear, quadratic, so on)
// almost all the error comes from derivative estimation.
// This does pairwise summation which gives us another digit of accuracy over naive summation.
Real t0 = 4*(f[1] + third<Real>()*f[3]);
Real t1 = -(25*third<Real>()*f[0] + f[4])/4 - 3*f[2];
a1 = m_h_inv*(t0 + t1);
}
Real b1 = right_endpoint_derivative;
if (boost::math::isnan(b1))
{
size_t n = length - 1;
Real t0 = 4*(f[n-3] + third<Real>()*f[n - 1]);
Real t1 = -(25*third<Real>()*f[n - 4] + f[n])/4 - 3*f[n - 2];
b1 = m_h_inv*(t0 + t1);
}
// s(x) = \sum \alpha_i B_{3}( (x- x_i - a)/h )
// Of course we must reindex from Kress's notation, since he uses negative indices which make C++ unhappy.
m_beta.resize(length + 2, std::numeric_limits<Real>::quiet_NaN());
// Since the splines have compact support, they decay to zero very fast outside the endpoints.
// This is often very annoying; we'd like to evaluate the interpolant a little bit outside the
// boundary [a,b] without massive error.
// A simple way to deal with this is just to subtract the DC component off the signal, so we need the average.
// This algorithm for computing the average is recommended in
// http://www.heikohoffmann.de/htmlthesis/node134.html
Real t = 1;
for (size_t i = 0; i < length; ++i)
{
if (boost::math::isnan(f[i]))
{
std::string err = "This function you are trying to interpolate is a nan at index " + std::to_string(i) + "\n";
throw std::logic_error(err);
}
m_avg += (f[i] - m_avg) / t;
t += 1;
}
// Now we must solve an almost-tridiagonal system, which requires O(N) operations.
// There are, in fact 5 diagonals, but they only differ from zero on the first and last row,
// so we can patch up the tridiagonal row reduction algorithm to deal with two special rows.
// See Kress, equations 8.41
// The the "tridiagonal" matrix is:
// 1 0 -1
// 1 4 1
// 1 4 1
// 1 4 1
// ....
// 1 4 1
// 1 0 -1
// Numerical estimate indicate that as N->Infinity, cond(A) -> 6.9, so this matrix is good.
std::vector<Real> rhs(length + 2, std::numeric_limits<Real>::quiet_NaN());
std::vector<Real> super_diagonal(length + 2, std::numeric_limits<Real>::quiet_NaN());
rhs[0] = -2*step_size*a1;
rhs[rhs.size() - 1] = -2*step_size*b1;
super_diagonal[0] = 0;
for(size_t i = 1; i < rhs.size() - 1; ++i)
{
rhs[i] = 6*(f[i - 1] - m_avg);
super_diagonal[i] = 1;
}
// One step of row reduction on the first row to patch up the 5-diagonal problem:
// 1 0 -1 | r0
// 1 4 1 | r1
// mapsto:
// 1 0 -1 | r0
// 0 4 2 | r1 - r0
// mapsto
// 1 0 -1 | r0
// 0 1 1/2| (r1 - r0)/4
super_diagonal[1] = 0.5;
rhs[1] = (rhs[1] - rhs[0])/4;
// Now do a tridiagonal row reduction the standard way, until just before the last row:
for (size_t i = 2; i < rhs.size() - 1; ++i)
{
Real diagonal = 4 - super_diagonal[i - 1];
rhs[i] = (rhs[i] - rhs[i - 1])/diagonal;
super_diagonal[i] /= diagonal;
}
// Now the last row, which is in the form
// 1 sd[n-3] 0 | rhs[n-3]
// 0 1 sd[n-2] | rhs[n-2]
// 1 0 -1 | rhs[n-1]
Real final_subdiag = -super_diagonal[rhs.size() - 3];
rhs[rhs.size() - 1] = (rhs[rhs.size() - 1] - rhs[rhs.size() - 3])/final_subdiag;
Real final_diag = -1/final_subdiag;
// Now we're here:
// 1 sd[n-3] 0 | rhs[n-3]
// 0 1 sd[n-2] | rhs[n-2]
// 0 1 final_diag | (rhs[n-1] - rhs[n-3])/diag
final_diag = final_diag - super_diagonal[rhs.size() - 2];
rhs[rhs.size() - 1] = rhs[rhs.size() - 1] - rhs[rhs.size() - 2];
// Back substitutions:
m_beta[rhs.size() - 1] = rhs[rhs.size() - 1]/final_diag;
for(size_t i = rhs.size() - 2; i > 0; --i)
{
m_beta[i] = rhs[i] - super_diagonal[i]*m_beta[i + 1];
}
m_beta[0] = m_beta[2] + rhs[0];
}
template<class Real>
Real cubic_b_spline_imp<Real>::operator()(Real x) const
{
// See Kress, 8.40: Since B3 has compact support, we don't have to sum over all terms,
// just the (at most 5) whose support overlaps the argument.
Real z = m_avg;
Real t = m_h_inv*(x - m_a) + 1;
using std::max;
using std::min;
using std::ceil;
using std::floor;
size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
size_t k_max = (size_t) (max)((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))), (long) 0);
for (size_t k = k_min; k <= k_max; ++k)
{
z += m_beta[k]*b3_spline(t - k);
}
return z;
}
template<class Real>
Real cubic_b_spline_imp<Real>::prime(Real x) const
{
Real z = 0;
Real t = m_h_inv*(x - m_a) + 1;
using std::max;
using std::min;
using std::ceil;
using std::floor;
size_t k_min = (size_t) (max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2)));
size_t k_max = (size_t) (min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2)));
for (size_t k = k_min; k <= k_max; ++k)
{
z += m_beta[k]*b3_spline_prime(t - k);
}
return z*m_h_inv;
}
}}}
#endif