mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-17 17:42:02 -05:00
111 lines
2.9 KiB
Plaintext
111 lines
2.9 KiB
Plaintext
[/ math.qbk
|
|
Copyright 2006 Hubert Holin and John Maddock.
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt).
|
|
]
|
|
|
|
[section:sinc Sinus Cardinal and Hyperbolic Sinus Cardinal Functions]
|
|
|
|
[section:sinc_overview Sinus Cardinal and Hyperbolic Sinus Cardinal Functions Overview]
|
|
|
|
The [@http://mathworld.wolfram.com/SincFunction.html Sinus Cardinal family of functions]
|
|
(indexed by the family of indices [^a > 0])
|
|
is defined by
|
|
|
|
[equation special_functions_blurb20]
|
|
|
|
it sees heavy use in signal processing tasks.
|
|
|
|
By analogy, the
|
|
[@http://mathworld.wolfram.com/SinhcFunction.htm Hyperbolic Sinus Cardinal]
|
|
family of functions
|
|
(also indexed by the family of indices [^a > 0]) is defined by
|
|
|
|
[equation special_functions_blurb22]
|
|
|
|
These two families of functions are composed of entire functions.
|
|
|
|
These functions (__sinc_pi and __sinhc_pi) are needed by
|
|
[@http://www.boost.org/libs/math/quaternion/quaternion.html our implementation]
|
|
of [@http://mathworld.wolfram.com/Quaternion.html quaternions]
|
|
and [@http://mathworld.wolfram.com/Octonion.html octonions].
|
|
|
|
[: ['[*Sinus Cardinal of index pi (purple) and Hyperbolic Sinus Cardinal of index pi (red) on R]]]
|
|
[: [$../graphs/sinc_pi_and_sinhc_pi_on_r.png]]
|
|
|
|
[endsect]
|
|
|
|
[section sinc_pi]
|
|
|
|
``
|
|
#include <boost/math/special_functions/sinc.hpp>
|
|
``
|
|
|
|
template<class T>
|
|
``__sf_result`` sinc_pi(const T x);
|
|
|
|
template<class T, class ``__Policy``>
|
|
``__sf_result`` sinc_pi(const T x, const ``__Policy``&);
|
|
|
|
template<class T, template<typename> class U>
|
|
U<T> sinc_pi(const U<T> x);
|
|
|
|
template<class T, template<typename> class U, class ``__Policy``>
|
|
U<T> sinc_pi(const U<T> x, const ``__Policy``&);
|
|
|
|
Computes
|
|
[link math_toolkit.sinc.sinc_overview
|
|
the Sinus Cardinal] of x:
|
|
|
|
sinc_pi(x) = sin(x) / x
|
|
|
|
The second form is for complex numbers,
|
|
quaternions, octonions etc. Taylor series are used at the origin
|
|
to ensure accuracy.
|
|
|
|
[graph sinc_pi]
|
|
|
|
[optional_policy]
|
|
|
|
[endsect]
|
|
|
|
[section sinhc_pi]
|
|
|
|
``
|
|
#include <boost/math/special_functions/sinhc.hpp>
|
|
``
|
|
|
|
template<class T>
|
|
``__sf_result`` sinhc_pi(const T x);
|
|
|
|
template<class T, class ``__Policy``>
|
|
``__sf_result`` sinhc_pi(const T x, const ``__Policy``&);
|
|
|
|
template<typename T, template<typename> class U>
|
|
U<T> sinhc_pi(const U<T> x);
|
|
|
|
template<class T, template<typename> class U, class ``__Policy``>
|
|
U<T> sinhc_pi(const U<T> x, const ``__Policy``&);
|
|
|
|
Computes http://mathworld.wolfram.com/SinhcFunction.html
|
|
[link math_toolkit.sinc.sinc_overview
|
|
the Hyperbolic Sinus Cardinal] of x:
|
|
|
|
sinhc_pi(x) = sinh(x) / x
|
|
|
|
The second form is for
|
|
complex numbers, quaternions, octonions etc. Taylor series are used at the origin
|
|
to ensure accuracy.
|
|
|
|
The return type of the first form is computed using the __arg_promotion_rules
|
|
when T is an integer type.
|
|
|
|
[optional_policy]
|
|
|
|
[graph sinhc_pi]
|
|
|
|
[endsect]
|
|
|
|
[endsect]
|