mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-20 11:01:54 -05:00
651 lines
26 KiB
C++
651 lines
26 KiB
C++
// test_poisson.cpp
|
|
|
|
// Copyright Paul A. Bristow 2007.
|
|
// Copyright John Maddock 2006.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Basic sanity test for Poisson Cumulative Distribution Function.
|
|
|
|
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
|
|
|
|
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
|
|
# define TEST_FLOAT
|
|
# define TEST_DOUBLE
|
|
# define TEST_LDOUBLE
|
|
# define TEST_REAL_CONCEPT
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(disable: 4127) // conditional expression is constant.
|
|
#endif
|
|
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp> // Boost.Test
|
|
#include <boost/test/floating_point_comparison.hpp>
|
|
|
|
#include <boost/math/concepts/real_concept.hpp> // for real_concept
|
|
#include <boost/math/distributions/poisson.hpp>
|
|
using boost::math::poisson_distribution;
|
|
#include <boost/math/tools/test.hpp> // for real_concept
|
|
|
|
#include <boost/math/special_functions/gamma.hpp> // for (incomplete) gamma.
|
|
// using boost::math::qamma_Q;
|
|
#include "table_type.hpp"
|
|
#include "test_out_of_range.hpp"
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::setprecision;
|
|
using std::showpoint;
|
|
using std::ios;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
|
|
template <class RealType> // Any floating-point type RealType.
|
|
void test_spots(RealType)
|
|
{
|
|
// Basic sanity checks, tolerance is about numeric_limits<RealType>::digits10 decimal places,
|
|
// guaranteed for type RealType, eg 6 for float, 15 for double,
|
|
// expressed as a percentage (so -2) for BOOST_CHECK_CLOSE,
|
|
|
|
int decdigits = numeric_limits<RealType>::digits10;
|
|
// May eb >15 for 80 and 128-bit FP typtes.
|
|
if (decdigits <= 0)
|
|
{ // decdigits is not defined, for example real concept,
|
|
// so assume precision of most test data is double (for example, MathCAD).
|
|
decdigits = numeric_limits<double>::digits10; // == 15 for 64-bit
|
|
}
|
|
if (decdigits > 15 ) // numeric_limits<double>::digits10)
|
|
{ // 15 is the accuracy of the MathCAD test data.
|
|
decdigits = 15; // numeric_limits<double>::digits10;
|
|
}
|
|
|
|
decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error.
|
|
RealType tolerance = static_cast<RealType>(std::pow(10., static_cast<double>(2-decdigits))); // 1e-6 (-2 so as %)
|
|
tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error.
|
|
// Typically 2e-13% = 2e-15 as fraction for double.
|
|
|
|
// Sources of spot test values:
|
|
|
|
// Many be some combinations for which the result is 'exact',
|
|
// or at least is good to 40 decimal digits.
|
|
// 40 decimal digits includes 128-bit significand User Defined Floating-Point types,
|
|
|
|
// Best source of accurate values is:
|
|
// Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands)
|
|
// http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized
|
|
// GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z).
|
|
|
|
// http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/PoissonDistribution.html
|
|
|
|
// MathCAD defines ppois(k, lambda== mean) as k integer, k >=0.
|
|
// ppois(0, 5) = 6.73794699908547e-3
|
|
// ppois(1, 5) = 0.040427681994513;
|
|
// ppois(10, 10) = 5.830397501929850E-001
|
|
// ppois(10, 1) = 9.999999899522340E-001
|
|
// ppois(5,5) = 0.615960654833065
|
|
|
|
// qpois returns inverse Poission distribution, that is the smallest (floor) k so that ppois(k, lambda) >= p
|
|
// p is real number, real mean lambda > 0
|
|
// k is approximately the integer for which probability(X <= k) = p
|
|
// when random variable X has the Poisson distribution with parameters lambda.
|
|
// Uses discrete bisection.
|
|
// qpois(6.73794699908547e-3, 5) = 1
|
|
// qpois(0.040427681994513, 5) =
|
|
|
|
// Test Poisson with spot values from MathCAD 'known good'.
|
|
|
|
using boost::math::poisson_distribution;
|
|
using ::boost::math::poisson;
|
|
using ::boost::math::cdf;
|
|
using ::boost::math::pdf;
|
|
|
|
// Check that bad arguments throw.
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
|
|
static_cast<RealType>(0)), // even for a good k.
|
|
std::domain_error); // Expected error to be thrown.
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(-1)), // mean negative is bad.
|
|
static_cast<RealType>(0)),
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unit OK,
|
|
static_cast<RealType>(-1)), // but negative events is bad.
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
|
|
static_cast<RealType>(99999)), // for any k events.
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad.
|
|
static_cast<RealType>(99999)), // for any k events.
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero.
|
|
static_cast<RealType>(0.5)), // probability OK.
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile(poisson_distribution<RealType>(static_cast<RealType>(-1)),
|
|
static_cast<RealType>(-1)), // bad probability.
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
|
|
static_cast<RealType>(-1)), // bad probability.
|
|
std::domain_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
|
|
static_cast<RealType>(1)), // bad probability.
|
|
std::overflow_error);
|
|
|
|
BOOST_MATH_CHECK_THROW(
|
|
quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)),
|
|
static_cast<RealType>(0))), // bad probability.
|
|
std::overflow_error);
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile(poisson_distribution<RealType>(static_cast<RealType>(1)),
|
|
static_cast<RealType>(0)), // bad probability.
|
|
0);
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
quantile(complement(poisson_distribution<RealType>(static_cast<RealType>(1)),
|
|
static_cast<RealType>(1))), // bad probability.
|
|
0);
|
|
|
|
// Check some test values.
|
|
|
|
BOOST_CHECK_CLOSE( // mode
|
|
mode(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
|
|
static_cast<RealType>(4), // mode.
|
|
tolerance);
|
|
|
|
//BOOST_CHECK_CLOSE( // mode
|
|
// median(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
|
|
// static_cast<RealType>(4), // mode.
|
|
// tolerance);
|
|
poisson_distribution<RealType> dist4(static_cast<RealType>(40));
|
|
|
|
BOOST_CHECK_CLOSE( // median
|
|
median(dist4), // mode = mean = 4. median = 40.328333333333333
|
|
quantile(dist4, static_cast<RealType>(0.5)), // 39.332839138842637
|
|
tolerance);
|
|
|
|
// PDF
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
|
|
static_cast<RealType>(0)),
|
|
static_cast<RealType>(1.831563888873410E-002), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
|
|
static_cast<RealType>(2)),
|
|
static_cast<RealType>(1.465251111098740E-001), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(poisson_distribution<RealType>(static_cast<RealType>(20)), // mean big.
|
|
static_cast<RealType>(1)), // k small
|
|
static_cast<RealType>(4.122307244877130E-008), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
|
|
static_cast<RealType>(20)), // K>> mean
|
|
static_cast<RealType>(8.277463646553730E-009), // probability.
|
|
tolerance);
|
|
|
|
// CDF
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(0)), // zero k events.
|
|
static_cast<RealType>(3.678794411714420E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(1)), // one k event.
|
|
static_cast<RealType>(7.357588823428830E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(2)), // two k events.
|
|
static_cast<RealType>(9.196986029286060E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(10)), // two k events.
|
|
static_cast<RealType>(9.999999899522340E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(15)), // two k events.
|
|
static_cast<RealType>(9.999999999999810E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(16)), // two k events.
|
|
static_cast<RealType>(9.999999999999990E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(17)), // two k events.
|
|
static_cast<RealType>(1.), // probability unity for double.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
|
|
static_cast<RealType>(1.), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
|
|
static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
|
|
static_cast<RealType>(6.328271240363390E-15), // probability is tiny.
|
|
tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD
|
|
// Note that there two tiny probability are much more different.
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
|
|
static_cast<RealType>(34)), // k events at limit for float unchecked_factorial table.
|
|
static_cast<RealType>(1.898481372109020E-14), // probability is tiny.
|
|
tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD
|
|
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k
|
|
static_cast<RealType>(33)), // k events above limit for float unchecked_factorial table.
|
|
static_cast<RealType>(5.461191812386560E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k-1
|
|
static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
|
|
static_cast<RealType>(6.133535681502950E-1), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
|
|
static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
|
|
static_cast<RealType>(1.), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
|
|
static_cast<RealType>(5)), // k events.
|
|
static_cast<RealType>(0.615960654833065), // probability.
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
|
|
static_cast<RealType>(1)), // k events.
|
|
static_cast<RealType>(0.040427681994512805), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
|
|
static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
|
|
static_cast<RealType>(0.006737946999085467), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
|
|
static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
|
|
static_cast<RealType>(0.36787944117144233), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
|
|
static_cast<RealType>(10)), // k events.
|
|
static_cast<RealType>(0.5830397501929856), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
|
|
static_cast<RealType>(5)), // k events.
|
|
static_cast<RealType>(0.785130387030406), // probability.
|
|
tolerance);
|
|
|
|
// complement CDF
|
|
BOOST_CHECK_CLOSE( // Complement CDF
|
|
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
|
|
static_cast<RealType>(5))), // k events.
|
|
static_cast<RealType>(1 - 0.785130387030406), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE( // Complement CDF
|
|
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
|
|
static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
|
|
static_cast<RealType>(0.98168436111126578), // probability.
|
|
tolerance);
|
|
BOOST_CHECK_CLOSE( // Complement CDF
|
|
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
|
|
static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
|
|
static_cast<RealType>(0.63212055882855767), // probability.
|
|
tolerance);
|
|
|
|
// Example where k is bigger than max_factorial (>34 for float)
|
|
// (therefore using log gamma so perhaps less accurate).
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(40.)), // mean
|
|
static_cast<RealType>(40)), // k events.
|
|
static_cast<RealType>(0.5419181783625430), // probability.
|
|
tolerance);
|
|
|
|
// Quantile & complement.
|
|
BOOST_CHECK_CLOSE(
|
|
boost::math::quantile(
|
|
poisson_distribution<RealType>(5), // mean.
|
|
static_cast<RealType>(0.615960654833065)), // probability.
|
|
static_cast<RealType>(5.), // Expect k = 5
|
|
tolerance/5); //
|
|
|
|
// EQUAL is too optimistic - fails [5.0000000000000124 != 5]
|
|
// BOOST_CHECK_EQUAL(boost::math::quantile( //
|
|
// poisson_distribution<RealType>(5.), // mean.
|
|
// static_cast<RealType>(0.615960654833065)), // probability.
|
|
// static_cast<RealType>(5.)); // Expect k = 5 events.
|
|
|
|
BOOST_CHECK_CLOSE(boost::math::quantile(
|
|
poisson_distribution<RealType>(4), // mean.
|
|
static_cast<RealType>(0.785130387030406)), // probability.
|
|
static_cast<RealType>(5.), // Expect k = 5 events.
|
|
tolerance/5);
|
|
|
|
// Check on quantile of other examples of inverse of cdf.
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
|
|
static_cast<RealType>(10)), // k events.
|
|
static_cast<RealType>(0.5830397501929856), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
|
|
poisson_distribution<RealType>(10.), // mean.
|
|
static_cast<RealType>(0.5830397501929856)), // probability.
|
|
static_cast<RealType>(10.), // Expect k = 10 events.
|
|
tolerance/5);
|
|
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
|
|
static_cast<RealType>(5)), // k events.
|
|
static_cast<RealType>(0.785130387030406), // probability.
|
|
tolerance);
|
|
|
|
BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
|
|
poisson_distribution<RealType>(4.), // mean.
|
|
static_cast<RealType>(0.785130387030406)), // probability.
|
|
static_cast<RealType>(5.), // Expect k = 10 events.
|
|
tolerance/5);
|
|
|
|
|
|
|
|
//BOOST_CHECK_CLOSE(boost::math::quantile(
|
|
// poisson_distribution<RealType>(5), // mean.
|
|
// static_cast<RealType>(0.785130387030406)), // probability.
|
|
// // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
|
|
// static_cast<RealType>(6.), // Expect k = 6 events.
|
|
// tolerance/5);
|
|
|
|
//BOOST_CHECK_CLOSE(boost::math::quantile(
|
|
// poisson_distribution<RealType>(5), // mean.
|
|
// static_cast<RealType>(0.77)), // probability.
|
|
// // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
|
|
// static_cast<RealType>(7.), // Expect k = 6 events.
|
|
// tolerance/5);
|
|
|
|
//BOOST_CHECK_CLOSE(boost::math::quantile(
|
|
// poisson_distribution<RealType>(5), // mean.
|
|
// static_cast<RealType>(0.75)), // probability.
|
|
// // 6.1882832344329559 result but MathCAD givest smallest integer ppois(k, mean) >= prob
|
|
// static_cast<RealType>(6.), // Expect k = 6 events.
|
|
// tolerance/5);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
boost::math::quantile(
|
|
complement(
|
|
poisson_distribution<RealType>(4),
|
|
static_cast<RealType>(1 - 0.785130387030406))), // complement.
|
|
static_cast<RealType>(5), // Expect k = 5 events.
|
|
tolerance/5);
|
|
|
|
BOOST_CHECK_EQUAL(boost::math::quantile( // Check case when probability < cdf(0) (== pdf(0))
|
|
poisson_distribution<RealType>(1), // mean is small, so cdf and pdf(0) are about 0.35.
|
|
static_cast<RealType>(0.0001)), // probability < cdf(0).
|
|
static_cast<RealType>(0)); // Expect k = 0 events exactly.
|
|
|
|
BOOST_CHECK_EQUAL(
|
|
boost::math::quantile(
|
|
complement(
|
|
poisson_distribution<RealType>(1),
|
|
static_cast<RealType>(0.9999))), // complement, so 1-probability < cdf(0)
|
|
static_cast<RealType>(0)); // Expect k = 0 events exactly.
|
|
|
|
//
|
|
// Test quantile policies against test data:
|
|
//
|
|
#define T RealType
|
|
#include "poisson_quantile.ipp"
|
|
|
|
for(unsigned i = 0; i < poisson_quantile_data.size(); ++i)
|
|
{
|
|
using namespace boost::math::policies;
|
|
typedef policy<discrete_quantile<real> > P1;
|
|
typedef policy<discrete_quantile<integer_round_down> > P2;
|
|
typedef policy<discrete_quantile<integer_round_up> > P3;
|
|
typedef policy<discrete_quantile<integer_round_outwards> > P4;
|
|
typedef policy<discrete_quantile<integer_round_inwards> > P5;
|
|
typedef policy<discrete_quantile<integer_round_nearest> > P6;
|
|
RealType tol = boost::math::tools::epsilon<RealType>() * 20;
|
|
if(!boost::is_floating_point<RealType>::value)
|
|
tol *= 7;
|
|
//
|
|
// Check full real value first:
|
|
//
|
|
poisson_distribution<RealType, P1> p1(poisson_quantile_data[i][0]);
|
|
RealType x = quantile(p1, poisson_quantile_data[i][1]);
|
|
BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][2], tol);
|
|
x = quantile(complement(p1, poisson_quantile_data[i][1]));
|
|
BOOST_CHECK_CLOSE_FRACTION(x, poisson_quantile_data[i][3], tol * 3);
|
|
//
|
|
// Now with round down to integer:
|
|
//
|
|
poisson_distribution<RealType, P2> p2(poisson_quantile_data[i][0]);
|
|
x = quantile(p2, poisson_quantile_data[i][1]);
|
|
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2]));
|
|
x = quantile(complement(p2, poisson_quantile_data[i][1]));
|
|
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3]));
|
|
//
|
|
// Now with round up to integer:
|
|
//
|
|
poisson_distribution<RealType, P3> p3(poisson_quantile_data[i][0]);
|
|
x = quantile(p3, poisson_quantile_data[i][1]);
|
|
BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][2]));
|
|
x = quantile(complement(p3, poisson_quantile_data[i][1]));
|
|
BOOST_CHECK_EQUAL(x, ceil(poisson_quantile_data[i][3]));
|
|
//
|
|
// Now with round to integer "outside":
|
|
//
|
|
poisson_distribution<RealType, P4> p4(poisson_quantile_data[i][0]);
|
|
x = quantile(p4, poisson_quantile_data[i][1]);
|
|
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][2]) : ceil(poisson_quantile_data[i][2]));
|
|
x = quantile(complement(p4, poisson_quantile_data[i][1]));
|
|
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][3]) : floor(poisson_quantile_data[i][3]));
|
|
//
|
|
// Now with round to integer "inside":
|
|
//
|
|
poisson_distribution<RealType, P5> p5(poisson_quantile_data[i][0]);
|
|
x = quantile(p5, poisson_quantile_data[i][1]);
|
|
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? ceil(poisson_quantile_data[i][2]) : floor(poisson_quantile_data[i][2]));
|
|
x = quantile(complement(p5, poisson_quantile_data[i][1]));
|
|
BOOST_CHECK_EQUAL(x, poisson_quantile_data[i][1] < 0.5f ? floor(poisson_quantile_data[i][3]) : ceil(poisson_quantile_data[i][3]));
|
|
//
|
|
// Now with round to nearest integer:
|
|
//
|
|
poisson_distribution<RealType, P6> p6(poisson_quantile_data[i][0]);
|
|
x = quantile(p6, poisson_quantile_data[i][1]);
|
|
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][2] + 0.5f));
|
|
x = quantile(complement(p6, poisson_quantile_data[i][1]));
|
|
BOOST_CHECK_EQUAL(x, floor(poisson_quantile_data[i][3] + 0.5f));
|
|
}
|
|
check_out_of_range<poisson_distribution<RealType> >(1);
|
|
} // template <class RealType>void test_spots(RealType)
|
|
|
|
//
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
// Check that can construct normal distribution using the two convenience methods:
|
|
using namespace boost::math;
|
|
poisson myp1(2); // Using typedef
|
|
poisson_distribution<> myp2(2); // Using default RealType double.
|
|
|
|
// Basic sanity-check spot values.
|
|
|
|
// Some plain double examples & tests:
|
|
cout.precision(17); // double max_digits10
|
|
cout.setf(ios::showpoint);
|
|
|
|
poisson mypoisson(4.); // // mean = 4, default FP type is double.
|
|
cout << "mean(mypoisson, 4.) == " << mean(mypoisson) << endl;
|
|
cout << "mean(mypoisson, 0.) == " << mean(mypoisson) << endl;
|
|
cout << "cdf(mypoisson, 2.) == " << cdf(mypoisson, 2.) << endl;
|
|
cout << "pdf(mypoisson, 2.) == " << pdf(mypoisson, 2.) << endl;
|
|
|
|
// poisson mydudpoisson(0.);
|
|
// throws (if BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error).
|
|
|
|
#ifndef BOOST_NO_EXCEPTIONS
|
|
BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::domain_error);// Mean must be > 0.
|
|
BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::logic_error);// Mean must be > 0.
|
|
#else
|
|
BOOST_MATH_CHECK_THROW(poisson(-1), std::domain_error);// Mean must be > 0.
|
|
BOOST_MATH_CHECK_THROW(poisson(-1), std::logic_error);// Mean must be > 0.
|
|
#endif
|
|
// Passes the check because logic_error is a parent????
|
|
// BOOST_MATH_CHECK_THROW(poisson mydudpoisson(-1), std::overflow_error); // fails the check
|
|
// because overflow_error is unrelated - except from std::exception
|
|
BOOST_MATH_CHECK_THROW(cdf(mypoisson, -1), std::domain_error); // k must be >= 0
|
|
|
|
BOOST_CHECK_EQUAL(mean(mypoisson), 4.);
|
|
BOOST_CHECK_CLOSE(
|
|
pdf(mypoisson, 2.), // k events = 2.
|
|
1.465251111098740E-001, // probability.
|
|
5e-13);
|
|
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(mypoisson, 2.), // k events = 2.
|
|
0.238103305553545, // probability.
|
|
5e-13);
|
|
|
|
|
|
#if 0
|
|
// Compare cdf from finite sum of pdf and gamma_q.
|
|
using boost::math::cdf;
|
|
using boost::math::pdf;
|
|
|
|
double mean = 4.;
|
|
cout.precision(17); // double max_digits10
|
|
cout.setf(ios::showpoint);
|
|
cout << showpoint << endl; // Ensure trailing zeros are shown.
|
|
// This also helps show the expected precision max_digits10
|
|
//cout.unsetf(ios::showpoint); // No trailing zeros are shown.
|
|
|
|
cout << "k pdf sum cdf diff" << endl;
|
|
double sum = 0.;
|
|
for (int i = 0; i <= 50; i++)
|
|
{
|
|
cout << i << ' ' ;
|
|
double p = pdf(poisson_distribution<double>(mean), static_cast<double>(i));
|
|
sum += p;
|
|
|
|
cout << p << ' ' << sum << ' '
|
|
<< cdf(poisson_distribution<double>(mean), static_cast<double>(i)) << ' ';
|
|
{
|
|
cout << boost::math::gamma_q<double>(i+1, mean); // cdf
|
|
double diff = boost::math::gamma_q<double>(i+1, mean) - sum; // cdf -sum
|
|
cout << setprecision (2) << ' ' << diff; // 0 0 to 4, 1 eps 5 to 9, 10 to 20 2 eps, 21 upwards 3 eps
|
|
|
|
}
|
|
BOOST_CHECK_CLOSE(
|
|
cdf(mypoisson, static_cast<double>(i)),
|
|
sum, // of pdfs.
|
|
4e-14); // Fails at 2e-14
|
|
// This call puts the precision etc back to default 6 !!!
|
|
cout << setprecision(17) << showpoint;
|
|
|
|
|
|
cout << endl;
|
|
}
|
|
|
|
cout << cdf(poisson_distribution<double>(5), static_cast<double>(0)) << ' ' << endl; // 0.006737946999085467
|
|
cout << cdf(poisson_distribution<double>(5), static_cast<double>(1)) << ' ' << endl; // 0.040427681994512805
|
|
cout << cdf(poisson_distribution<double>(2), static_cast<double>(3)) << ' ' << endl; // 0.85712346049854715
|
|
|
|
{ // Compare approximate formula in Wikipedia with quantile(half)
|
|
for (int i = 1; i < 100; i++)
|
|
{
|
|
poisson_distribution<double> distn(static_cast<double>(i));
|
|
cout << i << ' ' << median(distn) << ' ' << quantile(distn, 0.5) << ' '
|
|
<< median(distn) - quantile(distn, 0.5) << endl; // formula appears to be out-by-one??
|
|
} // so quantile(half) used via derived accressors.
|
|
}
|
|
#endif
|
|
|
|
// (Parameter value, arbitrarily zero, only communicates the floating-point type).
|
|
#ifdef TEST_POISSON
|
|
test_spots(0.0F); // Test float.
|
|
#endif
|
|
#ifdef TEST_DOUBLE
|
|
test_spots(0.0); // Test double.
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
if (numeric_limits<long double>::digits10 > numeric_limits<double>::digits10)
|
|
{ // long double is better than double (so not MSVC where they are same).
|
|
#ifdef TEST_LDOUBLE
|
|
test_spots(0.0L); // Test long double.
|
|
#endif
|
|
}
|
|
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#ifdef TEST_REAL_CONCEPT
|
|
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
} // BOOST_AUTO_TEST_CASE( test_main )
|
|
|
|
/*
|
|
|
|
Output:
|
|
|
|
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_poisson.exe"
|
|
Running 1 test case...
|
|
mean(mypoisson, 4.) == 4.0000000000000000
|
|
mean(mypoisson, 0.) == 4.0000000000000000
|
|
cdf(mypoisson, 2.) == 0.23810330555354431
|
|
pdf(mypoisson, 2.) == 0.14652511110987343
|
|
*** No errors detected
|
|
|
|
*/
|