mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-29 15:48:38 -05:00
92 lines
3.5 KiB
C++
92 lines
3.5 KiB
C++
// Copyright Paul A. 2007, 2010
|
|
// Copyright John Maddock 2007
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Simple example of computing probabilities for a binomial random variable.
|
|
// Replication of source nag_binomial_dist (g01bjc).
|
|
|
|
// Shows how to replace NAG C library calls by Boost Math Toolkit C++ calls.
|
|
// Note that the default policy does not replicate the way that NAG
|
|
// library calls handle 'bad' arguments, but you can define policies that do,
|
|
// as well as other policies that may suit your application even better.
|
|
// See the examples of changing default policies for details.
|
|
|
|
#include <boost/math/distributions/binomial.hpp>
|
|
|
|
#include <iostream>
|
|
using std::cout; using std::endl; using std::ios; using std::showpoint;
|
|
#include <iomanip>
|
|
using std::fixed; using std::setw;
|
|
|
|
int main()
|
|
{
|
|
cout << "Using the binomial distribution to replicate a NAG library call." << endl;
|
|
using boost::math::binomial_distribution;
|
|
|
|
// This replicates the computation of the examples of using nag-binomial_dist
|
|
// using g01bjc in section g01 Somple Calculations on Statistical Data.
|
|
// http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf
|
|
// Program results section 8.3 page 3.g01bjc.3
|
|
//8.2. Program Data
|
|
//g01bjc Example Program Data
|
|
//4 0.50 2 : n, p, k
|
|
//19 0.44 13
|
|
//100 0.75 67
|
|
//2000 0.33 700
|
|
//8.3. Program Results
|
|
//g01bjc Example Program Results
|
|
//n p k plek pgtk peqk
|
|
//4 0.500 2 0.68750 0.31250 0.37500
|
|
//19 0.440 13 0.99138 0.00862 0.01939
|
|
//100 0.750 67 0.04460 0.95540 0.01700
|
|
//2000 0.330 700 0.97251 0.02749 0.00312
|
|
|
|
cout.setf(ios::showpoint); // Trailing zeros to show significant decimal digits.
|
|
cout.precision(5); // Might calculate this from trials in distribution?
|
|
cout << fixed;
|
|
// Binomial distribution.
|
|
|
|
// Note that cdf(dist, k) is equivalent to NAG library plek probability of <= k
|
|
// cdf(complement(dist, k)) is equivalent to NAG library pgtk probability of > k
|
|
// pdf(dist, k) is equivalent to NAG library peqk probability of == k
|
|
|
|
cout << " n p k plek pgtk peqk " << endl;
|
|
binomial_distribution<>my_dist(4, 0.5);
|
|
cout << setw(4) << (int)my_dist.trials() << " " << my_dist.success_fraction()
|
|
<< " " << 2 << " " << cdf(my_dist, 2) << " "
|
|
<< cdf(complement(my_dist, 2)) << " " << pdf(my_dist, 2) << endl;
|
|
|
|
binomial_distribution<>two(19, 0.440);
|
|
cout << setw(4) << (int)two.trials() << " " << two.success_fraction()
|
|
<< " " << 13 << " " << cdf(two, 13) << " "
|
|
<< cdf(complement(two, 13)) << " " << pdf(two, 13) << endl;
|
|
|
|
binomial_distribution<>three(100, 0.750);
|
|
cout << setw(4) << (int)three.trials() << " " << three.success_fraction()
|
|
<< " " << 67 << " " << cdf(three, 67) << " " << cdf(complement(three, 67))
|
|
<< " " << pdf(three, 67) << endl;
|
|
binomial_distribution<>four(2000, 0.330);
|
|
cout << setw(4) << (int)four.trials() << " " << four.success_fraction()
|
|
<< " " << 700 << " "
|
|
<< cdf(four, 700) << " " << cdf(complement(four, 700))
|
|
<< " " << pdf(four, 700) << endl;
|
|
|
|
return 0;
|
|
} // int main()
|
|
|
|
/*
|
|
|
|
Example of using the binomial distribution to replicate a NAG library call.
|
|
n p k plek pgtk peqk
|
|
4 0.50000 2 0.68750 0.31250 0.37500
|
|
19 0.44000 13 0.99138 0.00862 0.01939
|
|
100 0.75000 67 0.04460 0.95540 0.01700
|
|
2000 0.33000 700 0.97251 0.02749 0.00312
|
|
|
|
|
|
*/
|
|
|