WSJT-X/boost/libs/math/example/neg_binom_confidence_limits.cpp

179 lines
6.7 KiB
C++

// neg_binomial_confidence_limits.cpp
// Copyright John Maddock 2006
// Copyright Paul A. Bristow 2007, 2010
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Caution: this file contains quickbook markup as well as code
// and comments, don't change any of the special comment markups!
//[neg_binomial_confidence_limits
/*`
First we need some includes to access the negative binomial distribution
(and some basic std output of course).
*/
#include <boost/math/distributions/negative_binomial.hpp>
using boost::math::negative_binomial;
#include <iostream>
using std::cout; using std::endl;
#include <iomanip>
using std::setprecision;
using std::setw; using std::left; using std::fixed; using std::right;
/*`
First define a table of significance levels: these are the
probabilities that the true occurrence frequency lies outside the calculated
interval:
*/
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
/*`
Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence
that the true occurrence frequency lies *inside* the calculated interval.
We need a function to calculate and print confidence limits
for an observed frequency of occurrence
that follows a negative binomial distribution.
*/
void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{
// trials = Total number of trials.
// successes = Total number of observed successes.
// failures = trials - successes.
// success_fraction = successes /trials.
// Print out general info:
cout <<
"______________________________________________\n"
"2-Sided Confidence Limits For Success Fraction\n"
"______________________________________________\n\n";
cout << setprecision(7);
cout << setw(40) << left << "Number of trials" << " = " << trials << "\n";
cout << setw(40) << left << "Number of successes" << " = " << successes << "\n";
cout << setw(40) << left << "Number of failures" << " = " << trials - successes << "\n";
cout << setw(40) << left << "Observed frequency of occurrence" << " = " << double(successes) / trials << "\n";
// Print table header:
cout << "\n\n"
"___________________________________________\n"
"Confidence Lower Upper\n"
" Value (%) Limit Limit\n"
"___________________________________________\n";
/*`
And now for the important part - the bounds themselves.
For each value of /alpha/, we call `find_lower_bound_on_p` and
`find_upper_bound_on_p` to obtain lower and upper bounds respectively.
Note that since we are calculating a two-sided interval,
we must divide the value of alpha in two. Had we been calculating a
single-sided interval, for example: ['"Calculate a lower bound so that we are P%
sure that the true occurrence frequency is greater than some value"]
then we would *not* have divided by two.
*/
// Now print out the upper and lower limits for the alpha table values.
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// Calculate bounds:
double lower = negative_binomial::find_lower_bound_on_p(trials, successes, alpha[i]/2);
double upper = negative_binomial::find_upper_bound_on_p(trials, successes, alpha[i]/2);
// Print limits:
cout << fixed << setprecision(5) << setw(15) << right << lower;
cout << fixed << setprecision(5) << setw(15) << right << upper << endl;
}
cout << endl;
} // void confidence_limits_on_frequency(unsigned trials, unsigned successes)
/*`
And then call confidence_limits_on_frequency with increasing numbers of trials,
but always the same success fraction 0.1, or 1 in 10.
*/
int main()
{
confidence_limits_on_frequency(20, 2); // 20 trials, 2 successes, 2 in 20, = 1 in 10 = 0.1 success fraction.
confidence_limits_on_frequency(200, 20); // More trials, but same 0.1 success fraction.
confidence_limits_on_frequency(2000, 200); // Many more trials, but same 0.1 success fraction.
return 0;
} // int main()
//] [/negative_binomial_confidence_limits_eg end of Quickbook in C++ markup]
/*
______________________________________________
2-Sided Confidence Limits For Success Fraction
______________________________________________
Number of trials = 20
Number of successes = 2
Number of failures = 18
Observed frequency of occurrence = 0.1
___________________________________________
Confidence Lower Upper
Value (%) Limit Limit
___________________________________________
50.000 0.04812 0.13554
75.000 0.03078 0.17727
90.000 0.01807 0.22637
95.000 0.01235 0.26028
99.000 0.00530 0.33111
99.900 0.00164 0.41802
99.990 0.00051 0.49202
99.999 0.00016 0.55574
______________________________________________
2-Sided Confidence Limits For Success Fraction
______________________________________________
Number of trials = 200
Number of successes = 20
Number of failures = 180
Observed frequency of occurrence = 0.1000000
___________________________________________
Confidence Lower Upper
Value (%) Limit Limit
___________________________________________
50.000 0.08462 0.11350
75.000 0.07580 0.12469
90.000 0.06726 0.13695
95.000 0.06216 0.14508
99.000 0.05293 0.16170
99.900 0.04343 0.18212
99.990 0.03641 0.20017
99.999 0.03095 0.21664
______________________________________________
2-Sided Confidence Limits For Success Fraction
______________________________________________
Number of trials = 2000
Number of successes = 200
Number of failures = 1800
Observed frequency of occurrence = 0.1000000
___________________________________________
Confidence Lower Upper
Value (%) Limit Limit
___________________________________________
50.000 0.09536 0.10445
75.000 0.09228 0.10776
90.000 0.08916 0.11125
95.000 0.08720 0.11352
99.000 0.08344 0.11802
99.900 0.07921 0.12336
99.990 0.07577 0.12795
99.999 0.07282 0.13206
*/