WSJT-X/lib/t3.f90

77 lines
2.1 KiB
Fortran

program t3
parameter (NBLK=3456,NZ=10*NBLK)
real x0(NZ)
real x1(NZ)
twopi=8.0*atan(1.0)
dphi=twopi*1000.0/12000.0
phi=0.
do i=1,NZ
phi=phi+dphi
x0(i)=sin(phi)
if(mod(i,10007).eq.100) x0(i)=2.0
enddo
do j=1,10
ib=j*NBLK
ia=ib-NBLK+1
call filter(x0(ia:ib),x1(ia:ib))
enddo
x1(1:NZ-NBLK)=x1(NBLK+1:NZ)
do i=1,NZ-NBLK
write(13,1001) i,x0(i),x1(i),x1(i)-x0(i)
1001 format(i6,3f13.9)
enddo
end program t3
subroutine filter(x0,x1)
! Process time-domain data sequentially, optionally using a frequency-domain
! filter to alter the spectrum.
! NB: uses a sin^2 window with 50% overlap.
parameter (NFFT=6912,NH=NFFT/2)
real x0(0:NH-1) !Input samples
real x1(0:NH-1) !Output samples (delayed by one block)
real x0s(0:NH-1) !Saved upper half of input samples
real x1s(0:NH-1) !Saved upper half of output samples
real x(0:NFFT-1) !Work array
real*4 w(0:NFFT-1) !Window function
real f(0:NH) !Filter to be applied
real*4 s(0:NH) !Average spectrum
logical first
complex cx(0:NH) !Complex frequency-domain work array
equivalence (x,cx)
data first/.true./
save
if(first) then
pi=4.0*atan(1.0)
do i=0,NFFT-1
ww=sin(i*pi/NFFT)
w(i)=ww*ww/NFFT
enddo
s=0.0
f=1.0
x0s=0.
x1s=0.
first=.false.
endif
x(0:NH-1)=x0s !Previous 2nd half to new 1st half
x(NH:NFFT-1)=x0 !New 2nd half
x0s=x0 !Save the new 2nd half
x=w*x !Apply window
call four2a(x,NFFT,1,-1,0) !r2c FFT (to frequency domain)
cx=f*cx
call four2a(cx,NFFT,1,1,-1) !c2r FFT (back to time domain)
x1=x1s + x(0:NH-1) !Add previous segment's 2nd half
x1s=x(NH:NFFT-1) !Save the new 2nd half
return
end subroutine filter