mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			124 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <html>
 | |
| <head>
 | |
| <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
 | |
| <title>Relative Error</title>
 | |
| <link rel="stylesheet" href="../math.css" type="text/css">
 | |
| <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
 | |
| <link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
 | |
| <link rel="up" href="../backgrounders.html" title="Chapter 17. Backgrounders">
 | |
| <link rel="prev" href="special_tut/special_tut_test.html" title="Testing">
 | |
| <link rel="next" href="lanczos.html" title="The Lanczos Approximation">
 | |
| </head>
 | |
| <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
 | |
| <table cellpadding="2" width="100%"><tr>
 | |
| <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
 | |
| <td align="center"><a href="../../../../../index.html">Home</a></td>
 | |
| <td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
 | |
| <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
 | |
| <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
 | |
| <td align="center"><a href="../../../../../more/index.htm">More</a></td>
 | |
| </tr></table>
 | |
| <hr>
 | |
| <div class="spirit-nav">
 | |
| <a accesskey="p" href="special_tut/special_tut_test.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="lanczos.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
 | |
| </div>
 | |
| <div class="section">
 | |
| <div class="titlepage"><div><div><h2 class="title" style="clear: both">
 | |
| <a name="math_toolkit.relative_error"></a><a class="link" href="relative_error.html" title="Relative Error">Relative Error</a>
 | |
| </h2></div></div></div>
 | |
| <p>
 | |
|       Given an actual value <span class="emphasis"><em>a</em></span> and a found value <span class="emphasis"><em>v</em></span>
 | |
|       the relative error can be calculated from:
 | |
|     </p>
 | |
| <p>
 | |
|       <span class="inlinemediaobject"><img src="../../equations/error2.svg"></span>
 | |
|     </p>
 | |
| <p>
 | |
|       However the test programs in the library use the symmetrical form:
 | |
|     </p>
 | |
| <p>
 | |
|       <span class="inlinemediaobject"><img src="../../equations/error1.svg"></span>
 | |
|     </p>
 | |
| <p>
 | |
|       which measures <span class="emphasis"><em>relative difference</em></span> and happens to be less
 | |
|       error prone in use since we don't have to worry which value is the "true"
 | |
|       result, and which is the experimental one. It guarantees to return a value
 | |
|       at least as large as the relative error.
 | |
|     </p>
 | |
| <p>
 | |
|       Special care needs to be taken when one value is zero: we could either take
 | |
|       the absolute error in this case (but that's cheating as the absolute error
 | |
|       is likely to be very small), or we could assign a value of either 1 or infinity
 | |
|       to the relative error in this special case. In the test cases for the special
 | |
|       functions in this library, everything below a threshold is regarded as "effectively
 | |
|       zero", otherwise the relative error is assigned the value of 1 if only
 | |
|       one of the terms is zero. The threshold is currently set at <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><>::</span><span class="identifier">min</span><span class="special">()</span></code>: in other words all denormalised numbers
 | |
|       are regarded as a zero.
 | |
|     </p>
 | |
| <p>
 | |
|       All the test programs calculate <span class="emphasis"><em>quantized relative error</em></span>,
 | |
|       whereas the graphs in this manual are produced with the <span class="emphasis"><em>actual error</em></span>.
 | |
|       The difference is as follows: in the test programs, the test data is rounded
 | |
|       to the target real type under test when the program is compiled, so the error
 | |
|       observed will then be a whole number of <span class="emphasis"><em>units in the last place</em></span>
 | |
|       either rounded up from the actual error, or rounded down (possibly to zero).
 | |
|       In contrast the <span class="emphasis"><em>true error</em></span> is obtained by extending the
 | |
|       precision of the calculated value, and then comparing to the actual value:
 | |
|       in this case the calculated error may be some fraction of <span class="emphasis"><em>units in
 | |
|       the last place</em></span>.
 | |
|     </p>
 | |
| <p>
 | |
|       Note that throughout this manual and the test programs the relative error is
 | |
|       usually quoted in units of epsilon. However, remember that <span class="emphasis"><em>units
 | |
|       in the last place</em></span> more accurately reflect the number of contaminated
 | |
|       digits, and that relative error can <span class="emphasis"><em>"wobble"</em></span>
 | |
|       by a factor of 2 compared to <span class="emphasis"><em>units in the last place</em></span>.
 | |
|       In other words: two implementations of the same function, whose maximum relative
 | |
|       errors differ by a factor of 2, can actually be accurate to the same number
 | |
|       of binary digits. You have been warned!
 | |
|     </p>
 | |
| <h5>
 | |
| <a name="math_toolkit.relative_error.h0"></a>
 | |
|       <span class="phrase"><a name="math_toolkit.relative_error.zero_error"></a></span><a class="link" href="relative_error.html#math_toolkit.relative_error.zero_error">The
 | |
|       Impossibility of Zero Error</a>
 | |
|     </h5>
 | |
| <p>
 | |
|       For many of the functions in this library, it is assumed that the error is
 | |
|       "effectively zero" if the computation can be done with a number of
 | |
|       guard digits. However it should be remembered that if the result is a <span class="emphasis"><em>transcendental
 | |
|       number</em></span> then as a point of principle we can never be sure that the
 | |
|       result is accurate to more than 1 ulp. This is an example of what <a href="http://en.wikipedia.org/wiki/William_Kahan" target="_top">http://en.wikipedia.org/wiki/William_Kahan</a>
 | |
|       called <a href="http://en.wikipedia.org/wiki/Rounding#The_table-maker.27s_dilemma" target="_top">http://en.wikipedia.org/wiki/Rounding#The_table-maker.27s_dilemma</a>:
 | |
|       consider what happens if the first guard digit is a one, and the remaining
 | |
|       guard digits are all zero. Do we have a tie or not? Since the only thing we
 | |
|       can tell about a transcendental number is that its digits have no particular
 | |
|       pattern, we can never tell if we have a tie, no matter how many guard digits
 | |
|       we have. Therefore, we can never be completely sure that the result has been
 | |
|       rounded in the right direction. Of course, transcendental numbers that just
 | |
|       happen to be a tie - for however many guard digits we have - are extremely
 | |
|       rare, and get rarer the more guard digits we have, but even so....
 | |
|     </p>
 | |
| <p>
 | |
|       Refer to the classic text <a href="http://docs.sun.com/source/806-3568/ncg_goldberg.html" target="_top">What
 | |
|       Every Computer Scientist Should Know About Floating-Point Arithmetic</a>
 | |
|       for more information.
 | |
|     </p>
 | |
| </div>
 | |
| <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
 | |
| <td align="left"></td>
 | |
| <td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
 | |
|       Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
 | |
|       Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani,
 | |
|       Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
 | |
|         Distributed under the Boost Software License, Version 1.0. (See accompanying
 | |
|         file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
 | |
|       </p>
 | |
| </div></td>
 | |
| </tr></table>
 | |
| <hr>
 | |
| <div class="spirit-nav">
 | |
| <a accesskey="p" href="special_tut/special_tut_test.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="lanczos.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
 | |
| </div>
 | |
| </body>
 | |
| </html>
 |