mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			445 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			445 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //!file
 | |
| //! \brief floating-point comparison from Boost.Test
 | |
| // Copyright Paul A. Bristow 2015.
 | |
| // Copyright John Maddock 2015.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Note that this file contains Quickbook mark-up as well as code
 | |
| // and comments, don't change any of the special comment mark-ups!
 | |
| 
 | |
| #include <boost/math/special_functions/relative_difference.hpp>
 | |
| #include <boost/math/special_functions/next.hpp>
 | |
| 
 | |
| #include <iostream>
 | |
| #include <limits> // for std::numeric_limits<T>::epsilon().
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   std::cout << "Compare floats using Boost.Math functions/classes" << std::endl;
 | |
| 
 | |
| 
 | |
| //[compare_floats_using
 | |
| /*`Some using statements will ensure that the functions we need are accessible.
 | |
| */
 | |
| 
 | |
|   using namespace boost::math;
 | |
| 
 | |
| //`or
 | |
| 
 | |
|   using boost::math::relative_difference;
 | |
|   using boost::math::epsilon_difference;
 | |
|   using boost::math::float_next;
 | |
|   using boost::math::float_prior;
 | |
| 
 | |
| //] [/compare_floats_using]
 | |
| 
 | |
| 
 | |
| //[compare_floats_example_1
 | |
| /*`The following examples display values with all possibly significant digits.
 | |
| Newer compilers should provide `std::numeric_limitsFPT>::max_digits10`
 | |
| for this purpose, and here we use `float` precision where `max_digits10` = 9
 | |
| to avoid displaying a distracting number of decimal digits.
 | |
| 
 | |
| [note Older compilers can use this formula to calculate `max_digits10`
 | |
| from `std::numeric_limits<FPT>::digits10`:[br]
 | |
| __spaces `int max_digits10 = 2 + std::numeric_limits<FPT>::digits10 * 3010/10000;`
 | |
| ] [/note]
 | |
| 
 | |
| One can set the display including all trailing zeros
 | |
| (helpful for this example to show all potentially significant digits),
 | |
| and also to display `bool` values as words rather than integers:
 | |
| */
 | |
|   std::cout.precision(std::numeric_limits<float>::max_digits10);
 | |
|   std::cout << std::boolalpha << std::showpoint << std::endl;
 | |
| 
 | |
| //] [/compare_floats_example_1]
 | |
| 
 | |
| //[compare_floats_example_2]
 | |
| /*`
 | |
| When comparing values that are ['quite close] or ['approximately equal],
 | |
| we could use either `float_distance` or `relative_difference`/`epsilon_difference`, for example
 | |
| with type `float`, these two values are adjacent to each other:
 | |
| */
 | |
| 
 | |
|   float a = 1;
 | |
|   float b = 1 + std::numeric_limits<float>::epsilon();
 | |
|   std::cout << "a = " << a << std::endl;
 | |
|   std::cout << "b = " << b << std::endl;
 | |
|   std::cout << "float_distance = " << float_distance(a, b) << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
 | |
| 
 | |
| /*`
 | |
| Which produces the output:
 | |
| 
 | |
| [pre
 | |
| a = 1.00000000
 | |
| b = 1.00000012
 | |
| float_distance = 1.00000000
 | |
| relative_difference = 1.19209290e-007
 | |
| epsilon_difference = 1.00000000
 | |
| ]
 | |
| */
 | |
|   //] [/compare_floats_example_2]
 | |
| 
 | |
| //[compare_floats_example_3]
 | |
| /*`
 | |
| In the example above, it just so happens that the edit distance as measured by `float_distance`, and the
 | |
| difference measured in units of epsilon were equal.  However, due to the way floating point
 | |
| values are represented, that is not always the case:*/
 | |
| 
 | |
|   a = 2.0f / 3.0f;   // 2/3 inexactly represented as a float
 | |
|   b = float_next(float_next(float_next(a))); // 3 floating point values above a
 | |
|   std::cout << "a = " << a << std::endl;
 | |
|   std::cout << "b = " << b << std::endl;
 | |
|   std::cout << "float_distance = " << float_distance(a, b) << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
 | |
| 
 | |
| /*`
 | |
| Which produces the output:
 | |
| 
 | |
| [pre
 | |
| a = 0.666666687
 | |
| b = 0.666666865
 | |
| float_distance = 3.00000000
 | |
| relative_difference = 2.68220901e-007
 | |
| epsilon_difference = 2.25000000
 | |
| ]
 | |
| 
 | |
| There is another important difference between `float_distance` and the
 | |
| `relative_difference/epsilon_difference` functions in that `float_distance`
 | |
| returns a signed result that reflects which argument is larger in magnitude,
 | |
| where as `relative_difference/epsilon_difference` simply return an unsigned
 | |
| value that represents how far apart the values are.  For example if we swap
 | |
| the order of the arguments:
 | |
| */
 | |
| 
 | |
|   std::cout << "float_distance = " << float_distance(b, a) << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(b, a) << std::endl;
 | |
|   std::cout << "epsilon_difference = " << epsilon_difference(b, a) << std::endl;
 | |
| 
 | |
|   /*`
 | |
|   The output is now:
 | |
| 
 | |
|   [pre
 | |
|   float_distance = -3.00000000
 | |
|   relative_difference = 2.68220901e-007
 | |
|   epsilon_difference = 2.25000000
 | |
|   ]
 | |
| */
 | |
|   //] [/compare_floats_example_3]
 | |
| 
 | |
| //[compare_floats_example_4]
 | |
| /*`
 | |
| Zeros are always treated as equal, as are infinities as long as they have the same sign:*/
 | |
| 
 | |
|   a = 0;
 | |
|   b = -0;  // signed zero
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   a = b = std::numeric_limits<float>::infinity();
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(a, -b) << std::endl;
 | |
| 
 | |
| /*`
 | |
| Which produces the output:
 | |
| 
 | |
| [pre
 | |
| relative_difference = 0.000000000
 | |
| relative_difference = 0.000000000
 | |
| relative_difference = 3.40282347e+038
 | |
| ]
 | |
| */
 | |
| //] [/compare_floats_example_4]
 | |
| 
 | |
| //[compare_floats_example_5]
 | |
| /*`
 | |
| Note that finite values are always infinitely far away from infinities even if those finite values are very large:*/
 | |
| 
 | |
|   a = (std::numeric_limits<float>::max)();
 | |
|   b = std::numeric_limits<float>::infinity();
 | |
|   std::cout << "a = " << a << std::endl;
 | |
|   std::cout << "b = " << b << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
 | |
| 
 | |
| /*`
 | |
| Which produces the output:
 | |
| 
 | |
| [pre
 | |
| a = 3.40282347e+038
 | |
| b = 1.#INF0000
 | |
| relative_difference = 3.40282347e+038
 | |
| epsilon_difference = 3.40282347e+038
 | |
| ]
 | |
| */
 | |
| //] [/compare_floats_example_5]
 | |
| 
 | |
| //[compare_floats_example_6]
 | |
| /*`
 | |
| Finally, all denormalized values and zeros are treated as being effectively equal:*/
 | |
| 
 | |
|   a = std::numeric_limits<float>::denorm_min();
 | |
|   b = a * 2;
 | |
|   std::cout << "a = " << a << std::endl;
 | |
|   std::cout << "b = " << b << std::endl;
 | |
|   std::cout << "float_distance = " << float_distance(a, b) << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
 | |
|   a = 0;
 | |
|   std::cout << "a = " << a << std::endl;
 | |
|   std::cout << "b = " << b << std::endl;
 | |
|   std::cout << "float_distance = " << float_distance(a, b) << std::endl;
 | |
|   std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
 | |
|   std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
 | |
| 
 | |
| /*`
 | |
| Which produces the output:
 | |
| 
 | |
| [pre
 | |
| a = 1.40129846e-045
 | |
| b = 2.80259693e-045
 | |
| float_distance = 1.00000000
 | |
| relative_difference = 0.000000000
 | |
| epsilon_difference = 0.000000000
 | |
| a = 0.000000000
 | |
| b = 2.80259693e-045
 | |
| float_distance = 2.00000000
 | |
| relative_difference = 0.000000000
 | |
| epsilon_difference = 0.000000000]
 | |
| 
 | |
| Notice how, in the above example, two denormalized values that are a factor of 2 apart are
 | |
| none the less only one representation apart!
 | |
| 
 | |
| */
 | |
| //] [/compare_floats_example_6]
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| //[old_compare_floats_example_3
 | |
| //`The simplest use is to compare two values with a tolerance thus:
 | |
| 
 | |
|   bool is_close = is_close_to(1.F, 1.F + epsilon, epsilon); // One epsilon apart is close enough.
 | |
|   std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // true
 | |
| 
 | |
|   is_close = is_close_to(1.F, 1.F + 2 * epsilon, epsilon); // Two epsilon apart isn't close enough.
 | |
|   std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // false
 | |
| 
 | |
| /*`
 | |
| [note The type FPT of the tolerance and the type of the values [*must match].
 | |
| 
 | |
| So `is_close(0.1F, 1., 1.)` will fail to compile because "template parameter 'FPT' is ambiguous".
 | |
| Always provide the same type, using `static_cast<FPT>` if necessary.]
 | |
| */
 | |
| 
 | |
| 
 | |
| /*`An instance of class `close_at_tolerance` is more convenient
 | |
| when multiple tests with the same conditions are planned.
 | |
| A class that stores a tolerance of three epsilon (and the default ['strong] test) is:
 | |
| */
 | |
| 
 | |
|   close_at_tolerance<float> three_rounds(3 * epsilon); // 'strong' by default.
 | |
| 
 | |
| //`and we can confirm these settings:
 | |
| 
 | |
|   std::cout << "fraction_tolerance = "
 | |
|     << three_rounds.fraction_tolerance()
 | |
|     << std::endl; // +3.57627869e-007
 | |
|   std::cout << "strength = "
 | |
|     << (three_rounds.strength() == FPC_STRONG ? "strong" : "weak")
 | |
|     << std::endl; // strong
 | |
| 
 | |
| //`To start, let us use two values that are truly equal (having identical bit patterns)
 | |
| 
 | |
|   float a = 1.23456789F;
 | |
|   float b = 1.23456789F;
 | |
| 
 | |
| //`and make a comparison using our 3*epsilon `three_rounds` functor:
 | |
| 
 | |
|   bool close = three_rounds(a, b);
 | |
|   std::cout << "three_rounds(a, b) = " << close << std::endl; // true
 | |
| 
 | |
| //`Unsurprisingly, the result is true, and the failed fraction is zero.
 | |
| 
 | |
|   std::cout << "failed_fraction = " << three_rounds.failed_fraction() << std::endl;
 | |
| 
 | |
| /*`To get some nearby values, it is convenient to use the Boost.Math __next_float functions,
 | |
| for which we need an include
 | |
| 
 | |
|   #include <boost/math/special_functions/next.hpp>
 | |
| 
 | |
| and some using declarations:
 | |
| */
 | |
| 
 | |
|   using boost::math::float_next;
 | |
|   using boost::math::float_prior;
 | |
|   using boost::math::nextafter;
 | |
|   using boost::math::float_distance;
 | |
| 
 | |
| //`To add a few __ulp to one value:
 | |
|   b = float_next(a); // Add just one ULP to a.
 | |
|   b = float_next(b); // Add another one ULP.
 | |
|   b = float_next(b); // Add another one ULP.
 | |
|   // 3 epsilon would pass.
 | |
|   b = float_next(b); // Add another one ULP.
 | |
| 
 | |
| //`and repeat our comparison:
 | |
| 
 | |
|   close = three_rounds(a, b);
 | |
|   std::cout << "three_rounds(a, b) = " << close << std::endl; // false
 | |
|   std::cout << "failed_fraction = " << three_rounds.failed_fraction()
 | |
|     << std::endl;  // abs(u-v) / abs(v) = 3.86237957e-007
 | |
| 
 | |
| //`We can also 'measure' the number of bits different using the `float_distance` function:
 | |
| 
 | |
|   std::cout << "float_distance = " << float_distance(a, b) << std::endl; // 4
 | |
| 
 | |
| /*`Now consider two values that are much further apart
 | |
| than one might expect from ['computational noise],
 | |
| perhaps the result of two measurements of some physical property like length
 | |
| where an uncertainty of a percent or so might be expected.
 | |
| */
 | |
|   float fp1 = 0.01000F;
 | |
|   float fp2 = 0.01001F; // Slightly different.
 | |
| 
 | |
|   float tolerance = 0.0001F;
 | |
| 
 | |
|   close_at_tolerance<float> strong(epsilon); // Default is strong.
 | |
|   bool rs = strong(fp1, fp2);
 | |
|   std::cout << "strong(fp1, fp2) is " << rs << std::endl;
 | |
| 
 | |
| //`Or we could contrast using the ['weak] criterion:
 | |
|   close_at_tolerance<float> weak(epsilon, FPC_WEAK); // Explicitly weak.
 | |
|   bool rw = weak(fp1, fp2); //
 | |
|   std::cout << "weak(fp1, fp2) is " << rw << std::endl;
 | |
| 
 | |
| //`We can also construct, setting tolerance and strength, and compare in one statement:
 | |
| 
 | |
|   std::cout << a << " #= " << b << " is "
 | |
|     << close_at_tolerance<float>(epsilon, FPC_STRONG)(a, b) << std::endl;
 | |
|   std::cout << a << " ~= " << b << " is "
 | |
|     << close_at_tolerance<float>(epsilon, FPC_WEAK)(a, b) << std::endl;
 | |
| 
 | |
| //`but this has little advantage over using function `is_close_to` directly.
 | |
| 
 | |
| //] [/old_compare_floats_example_3]
 | |
| 
 | |
| 
 | |
| /*When the floating-point values become very small and near zero, using
 | |
| //a relative test becomes unhelpful because one is dividing by zero or tiny,
 | |
| 
 | |
| //Instead, an absolute test is needed, comparing one (or usually both) values with zero,
 | |
| //using a tolerance.
 | |
| //This is provided by the `small_with_tolerance` class and `is_small` function.
 | |
| 
 | |
|   namespace boost {
 | |
|   namespace math {
 | |
|   namespace fpc {
 | |
| 
 | |
| 
 | |
|   template<typename FPT>
 | |
|   class small_with_tolerance
 | |
|   {
 | |
|   public:
 | |
|   // Public typedefs.
 | |
|   typedef bool result_type;
 | |
| 
 | |
|   // Constructor.
 | |
|   explicit small_with_tolerance(FPT tolerance); // tolerance >= 0
 | |
| 
 | |
|   // Functor
 | |
|   bool operator()(FPT value) const; // return true if <= absolute tolerance (near zero).
 | |
|   };
 | |
| 
 | |
|   template<typename FPT>
 | |
|   bool
 | |
|   is_small(FPT value, FPT tolerance); // return true if value <= absolute tolerance (near zero).
 | |
| 
 | |
|   }}} // namespaces.
 | |
| 
 | |
| /*`
 | |
| [note The type FPT of the tolerance and the type of the value [*must match].
 | |
| 
 | |
| So `is_small(0.1F, 0.000001)` will fail to compile because "template parameter 'FPT' is ambiguous".
 | |
| Always provide the same type, using `static_cast<FPT>` if necessary.]
 | |
| 
 | |
| A few values near zero are tested with varying tolerance below.
 | |
| */
 | |
| //[compare_floats_small_1
 | |
| 
 | |
|   float c = 0;
 | |
|   std::cout << "0 is_small " << is_small(c, epsilon) << std::endl; // true
 | |
| 
 | |
|   c = std::numeric_limits<float>::denorm_min(); // 1.40129846e-045
 | |
|   std::cout << "denorm_ min =" << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true
 | |
| 
 | |
|   c = (std::numeric_limits<float>::min)(); // 1.17549435e-038
 | |
|   std::cout << "min = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true
 | |
| 
 | |
|   c = 1 * epsilon; // 1.19209290e-007
 | |
|   std::cout << "epsilon = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // false
 | |
| 
 | |
|   c = 1 * epsilon; // 1.19209290e-007
 | |
|   std::cout << "2 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // true
 | |
| 
 | |
|   c = 2 * epsilon; //2.38418579e-007
 | |
|   std::cout << "4 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // false
 | |
| 
 | |
|   c = 0.00001F;
 | |
|   std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true
 | |
| 
 | |
|   c = -0.00001F;
 | |
|   std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true
 | |
| 
 | |
| /*`Using the class `small_with_tolerance` allows storage of the tolerance,
 | |
| convenient if you make repeated tests with the same tolerance.
 | |
| */
 | |
| 
 | |
|   small_with_tolerance<float>my_test(0.01F);
 | |
| 
 | |
|   std::cout << "my_test(0.001F) is " << my_test(0.001F) << std::endl; // true
 | |
|   std::cout << "my_test(0.001F) is " << my_test(0.01F) << std::endl; // false
 | |
| 
 | |
|   //] [/compare_floats_small_1]
 | |
| #endif
 | |
|   return 0;
 | |
| }  // int main()
 | |
| 
 | |
| /*
 | |
| 
 | |
| Example output is:
 | |
| 
 | |
| //[compare_floats_output
 | |
| Compare floats using Boost.Test functions/classes
 | |
| 
 | |
| float epsilon = 1.19209290e-007
 | |
| is_close_to(1.F, 1.F + epsilon, epsilon); is true
 | |
| is_close_to(1.F, 1.F + epsilon, epsilon); is false
 | |
| fraction_tolerance = 3.57627869e-007
 | |
| strength = strong
 | |
| three_rounds(a, b) = true
 | |
| failed_fraction = 0.000000000
 | |
| three_rounds(a, b) = false
 | |
| failed_fraction = 3.86237957e-007
 | |
| float_distance = 4.00000000
 | |
| strong(fp1, fp2) is false
 | |
| weak(fp1, fp2) is false
 | |
| 1.23456788 #= 1.23456836 is false
 | |
| 1.23456788 ~= 1.23456836 is false
 | |
| 0 is_small true
 | |
| denorm_ min =1.40129846e-045, is_small is true
 | |
| min = 1.17549435e-038, is_small is true
 | |
| epsilon = 1.19209290e-007, is_small is false
 | |
| 2 epsilon = 1.19209290e-007, is_small is true
 | |
| 4 epsilon = 2.38418579e-007, is_small is false
 | |
| 0.00001 = 9.99999975e-006, is_small is true
 | |
| 0.00001 = -9.99999975e-006, is_small is true
 | |
| my_test(0.001F) is true
 | |
| 
 | |
| my_test(0.001F) is false//] [/compare_floats_output]
 | |
| */
 |