mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			210 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Christopher Kormanyos 2013.
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt or
 | |
| // copy at http://www.boost.org/LICENSE_1_0.txt).
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4996) // assignment operator could not be generated.
 | |
| #endif
 | |
| 
 | |
| # include <iostream>
 | |
| # include <iomanip>
 | |
| # include <limits>
 | |
| # include <cmath>
 | |
| 
 | |
| #include <boost/static_assert.hpp>
 | |
| #include <boost/type_traits/is_floating_point.hpp> 
 | |
| #include <boost/math/special_functions/next.hpp> // for float_distance
 | |
| 
 | |
| //[numeric_derivative_example
 | |
| /*`The following example shows how multiprecision calculations can be used to
 | |
| obtain full precision in a numerical derivative calculation that suffers from precision loss.
 | |
| 
 | |
| Consider some well-known central difference rules for numerically
 | |
| computing the 1st derivative of a function [f'(x)] with [/x] real.
 | |
| 
 | |
| Need a reference here?  Introduction to Partial Differential Equations, Peter J. Olver
 | |
|  December 16, 2012 
 | |
| 
 | |
| Here, the implementation uses a C++ template that can be instantiated with various
 | |
| floating-point types such as `float`, `double`, `long double`, or even
 | |
| a user-defined floating-point type like __multiprecision.
 | |
| 
 | |
| We will now use the derivative template with the built-in type `double` in
 | |
| order to numerically compute the derivative of a function, and then repeat
 | |
| with a 5 decimal digit higher precision user-defined floating-point type. 
 | |
| 
 | |
| Consider the function  shown below.
 | |
| !!
 | |
| (3)
 | |
| We will now take the derivative of this function with respect to x evaluated
 | |
| at x = 3= 2. In other words,
 | |
| 
 | |
| (4)
 | |
| 
 | |
| The expected result is
 | |
| 
 | |
|  0:74535 59924 99929 89880 . (5)
 | |
| The program below uses the derivative template in order to perform
 | |
| the numerical calculation of this derivative. The program also compares the
 | |
| numerically-obtained result with the expected result and reports the absolute
 | |
| relative error scaled to a deviation that can easily be related to the number of
 | |
| bits of lost precision.
 | |
| 
 | |
| */
 | |
| 
 | |
| /*` [note Rquires the C++11 feature of
 | |
| [@http://en.wikipedia.org/wiki/Anonymous_function#C.2B.2B anonymous functions]
 | |
| for the derivative function calls like `[]( const double & x_) -> double`.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| template <typename value_type,  typename function_type>
 | |
| value_type derivative (const value_type x, const value_type dx, function_type function)
 | |
| {
 | |
|   /*! \brief Compute the derivative of function using a 3-point central difference rule of O(dx^6).
 | |
|     \tparam value_type, floating-point type, for example: `double` or `cpp_dec_float_50`
 | |
|     \tparam function_type  
 | |
|     
 | |
|     \param x Value at which to evaluate derivative.
 | |
|     \param dx Incremental step-size.
 | |
|     \param function Function whose derivative is to computed.
 | |
|   
 | |
|     \return derivative at x.
 | |
|   */
 | |
| 
 | |
|   BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits<value_type>::is_integer, "value_type must be a floating-point type!");
 | |
| 
 | |
|   const value_type dx2(dx * 2U);
 | |
|   const value_type dx3(dx * 3U);
 | |
|   // Difference terms.
 | |
|   const value_type m1 ((function (x + dx) - function(x - dx)) / 2U);
 | |
|   const value_type m2 ((function (x + dx2) - function(x - dx2)) / 4U);
 | |
|   const value_type m3 ((function (x + dx3) - function(x - dx3)) / 6U);
 | |
|   const value_type fifteen_m1 (m1 * 15U);
 | |
|   const value_type six_m2 (m2 * 6U);
 | |
|   const value_type ten_dx (dx * 10U);
 | |
|   return ((fifteen_m1 - six_m2) + m3) / ten_dx;  // Derivative.
 | |
| } // 
 | |
| 
 | |
| #include <boost/multiprecision/cpp_dec_float.hpp>
 | |
|   using boost::multiprecision::number;
 | |
|   using boost::multiprecision::cpp_dec_float;
 | |
| 
 | |
| // Re-compute using 5 extra decimal digits precision (22) than double (17).
 | |
| #define MP_DIGITS10 unsigned (std::numeric_limits<double>::max_digits10 + 5)
 | |
| 
 | |
| typedef cpp_dec_float<MP_DIGITS10> mp_backend;
 | |
| typedef number<mp_backend> mp_type;
 | |
| 
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   {
 | |
|     const double d =
 | |
|       derivative
 | |
|       ( 1.5, // x = 3.2
 | |
|         std::ldexp (1., -9), // step size 2^-9 = see below for choice.
 | |
|         [](const double & x)->double // Function f(x).
 | |
|         {
 | |
|           return std::sqrt((x * x) - 1.) - std::acos(1. / x);
 | |
|         }
 | |
|       );
 | |
|   
 | |
|     // The 'exactly right' result is [sqrt]5 / 3 = 0.74535599249992989880.
 | |
|     const double rel_error = (d - 0.74535599249992989880) / 0.74535599249992989880;
 | |
|     const double bit_error = std::abs(rel_error) / std::numeric_limits<double>::epsilon();
 | |
|     std::cout.precision (std::numeric_limits<double>::digits10); // Show all guaranteed decimal digits.
 | |
|     std::cout << std::showpoint ; // Ensure that any trailing zeros are shown too.
 | |
| 
 | |
|     std::cout << " derivative : " << d << std::endl;
 | |
|     std::cout << " expected   : " << 0.74535599249992989880 << std::endl;
 | |
|     // Can compute an 'exact' value using multiprecision type.
 | |
|     std::cout << " expected   : " << sqrt(static_cast<mp_type>(5))/3U << std::endl;
 | |
|     std::cout << " bit_error : " << static_cast<unsigned long>(bit_error)  << std::endl;
 | |
| 
 | |
|     std::cout.precision(6);
 | |
|     std::cout << "float_distance = " << boost::math::float_distance(0.74535599249992989880, d) << std::endl;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   { // Compute using multiprecision type with an extra 5 decimal digits of precision.
 | |
|     const mp_type mp =
 | |
|       derivative(mp_type(mp_type(3) / 2U), // x = 3/2
 | |
|         mp_type(mp_type(1) / 10000000U), // Step size 10^7.
 | |
|         [](const mp_type & x)->mp_type
 | |
|         {
 | |
|           return sqrt((x * x) - 1.) - acos (1. / x); // Function
 | |
|         }
 | |
|     );
 | |
| 
 | |
|     const double d = mp.convert_to<double>(); // Convert to closest double.
 | |
|     const double rel_error = (d - 0.74535599249992989880) / 0.74535599249992989880;
 | |
|     const double bit_error = std::abs (rel_error) / std::numeric_limits<double>::epsilon();
 | |
|     std::cout.precision (std::numeric_limits <double>::digits10); // All guaranteed decimal digits.
 | |
|     std::cout << std::showpoint ; // Ensure that any trailing zeros are shown too.
 | |
|     std::cout << " derivative : " << d << std::endl;
 | |
|     // Can compute an 'exact' value using multiprecision type.
 | |
|     std::cout << " expected   : " << sqrt(static_cast<mp_type>(5))/3U << std::endl;
 | |
|     std::cout << " expected   : " << 0.74535599249992989880
 | |
|     << std::endl;
 | |
|     std::cout << " bit_error : "  << static_cast<unsigned long>(bit_error)  << std::endl;
 | |
| 
 | |
|     std::cout.precision(6);
 | |
|     std::cout << "float_distance = " << boost::math::float_distance(0.74535599249992989880, d) << std::endl;
 | |
| 
 | |
|     
 | |
|   }
 | |
| 
 | |
| 
 | |
| } // int main()
 | |
| 
 | |
| /*`
 | |
| The result of this program on a system with an eight-byte, 64-bit IEEE-754
 | |
| conforming floating-point representation for `double` is:
 | |
| 
 | |
|  derivative : 0.745355992499951
 | |
| 
 | |
|  derivative : 0.745355992499943
 | |
|  expected   : 0.74535599249993
 | |
|  bit_error : 78
 | |
| 
 | |
|     derivative : 0.745355992499930
 | |
|    expected   : 0.745355992499930
 | |
|    bit_error : 0
 | |
| 
 | |
| The resulting bit error is 0. This means that the result of the derivative
 | |
| calculation is bit-identical with the double representation of the expected result,
 | |
| and this is the best result possible for the built-in type.
 | |
| 
 | |
| The derivative in this example has a known closed form. There are, however,
 | |
| countless situations in numerical analysis (and not only for numerical deriva-
 | |
| tives) for which the calculation at hand does not have a known closed-form
 | |
| solution or for which the closed-form solution is highly inconvenient to use. In
 | |
| such cases, this technique may be useful.
 | |
| 
 | |
| This example has shown how multiprecision can be used to add extra digits
 | |
| to an ill-conditioned calculation that suffers from precision loss. When the result
 | |
| of the multiprecision calculation is converted to a built-in type such as double,
 | |
| the entire precision of the result in double is preserved.
 | |
| 
 | |
|  */
 | |
| 
 | |
| /*
 | |
| 
 | |
|   Description: Autorun "J:\Cpp\big_number\Debug\numerical_derivative_example.exe"
 | |
|    derivative : 0.745355992499943
 | |
|    expected   : 0.745355992499930
 | |
|    expected   : 0.745355992499930
 | |
|    bit_error : 78
 | |
|   float_distance = 117.000
 | |
|    derivative : 0.745355992499930
 | |
|    expected   : 0.745355992499930
 | |
|    expected   : 0.745355992499930
 | |
|    bit_error : 0
 | |
|   float_distance = 0.000000
 | |
| 
 | |
|  */
 | |
| 
 |