WSJT-X/lib/sync4.f90
Bill Somerville 95926577ae Make Fortran profiling timer function a callback with a default null implementation
Groundwork for calling the decoders directly from C/C++ threads.

To  access   the  timer   module  timer_module   must  now   be  used.
Instrumented code need  only use the module function  'timer' which is
now a  procedure pointer that  is guaranteed to be  associated (unless
null()  is assigned  to it,  which should  not be  done). The  default
behaviour of 'timer' is to do nothing.

If a  Fortran program  wishes to  profile code it  should now  use the
timer_impl module  which contains a default  timer implementation. The
main program should call 'init_timer([filename])' before using 'timer'
or     calling     routines     that     are     instrumented.      If
'init_timer([filename])'.  If it is called  then an optional file name
may  be  provided  with  'timer.out'  being used  as  a  default.  The
procedure 'fini_timer()' may be called to close the file.

The default  timer implementation is  thread safe if used  with OpenMP
multi-threaded code  so long as  the OpenMP  thread team is  given the
copyin(/timer_private/) attribute  for correct operation.   The common
block /timer_private/ should  be included for OpenMP  use by including
the file 'timer_common.inc'.

The module 'lib/timer_C_wrapper.f90' provides  a Fortran wrapper along
with 'init' and 'fini' subroutines  which allow a C/C++ application to
call timer instrumented  Fortran code and for it  to receive callbacks
of 'timer()' subroutine invocations.  No C/C++ timer implementation is
provided at this stage.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6320 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-12-27 15:40:57 +00:00

62 lines
1.6 KiB
Fortran

subroutine sync4(dat,jz,mode4,minw)
! Synchronizes JT4 data, finding the best-fit DT and DF.
use jt4
use timer_module, only: timer
parameter (NFFTMAX=2520) !Max length of FFTs
parameter (NHMAX=NFFTMAX/2) !Max length of power spectra
parameter (NSMAX=525) !Max number of half-symbol steps
real dat(jz)
real psavg(NHMAX) !Average spectrum of whole record
real s2(NHMAX,NSMAX) !2d spectrum, stepped by half-symbols
real tmp(1260)
save
! Do FFTs of twice symbol length, stepped by half symbols. Note that
! we have already downsampled the data by factor of 2.
nsym=207
nfft=2520
nh=nfft/2
nq=nfft/4
nsteps=jz/nq - 1
df=0.5*11025.0/nfft
psavg(1:nh)=0.
call timer('ps4 ',0)
do j=1,nsteps !Compute spectrum for each step, get average
k=(j-1)*nq + 1
call ps4(dat(k),nfft,s2(1,j))
psavg(1:nh)=psavg(1:nh) + s2(1:nh,j)
enddo
call timer('ps4 ',1)
call timer('flat1a ',0)
nsmo=min(10*mode4,150)
call flat1a(psavg,nsmo,s2,nh,nsteps,NHMAX,NSMAX) !Flatten spectra
call timer('flat1a ',1)
call timer('smo ',0)
if(mode4.ge.9) call smo(psavg,nh,tmp,mode4/4)
call timer('smo ',1)
ia=600.0/df
ib=1600.0/df
! ichmax=1.0+log(float(mode4))/log(2.0)
do ich=minw+1,7 !Find best width
kz=nch(ich)/2
! Set istep>1 for wide submodes?
do i=ia+kz,ib-kz !Find best frequency channel for CCF
call timer('xcor4 ',0)
call xcor4(s2,i,nsteps,nsym,ich,mode4)
call timer('xcor4 ',1)
enddo
enddo
return
end subroutine sync4